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Regional dynamical modeling and
control of flow problems under
unmeasurable and non-constant
viscosity

Türker Nazmi Erbil and Cosxku Kasnakoğlu

Abstract
In this paper a novel approach to the modeling and control of flow problems is considered. The main extension over existing methods is the ability to

handle a local region of interest, and the capability to deal with the fluid viscosity being non-constant and unmeasurable. For the modeling part, first a

number of snapshots of the fluid flow process at different viscosity values are obtained by computational fluid dynamics simulations of the Navier–

Stokes equations governing the flow. Wavelet transform, thresholding and reconstruction are applied to these snapshots and it is seen that the flow

process can be represented with acceptable accuracy using only the approximation coefficients of the wavelet transform. The support of the basis func-

tions are selected to tightly cover the desired region of interest so that the flow dynamics outside the desired region do not affect the model signifi-

cantly. Subspace system identification methods are used to fit a low-dimensional dynamical system model to the approximation coefficients, which

yields a set of linear time invariant models, one for each breakpoint viscosity. A single uncertain model is built to capture all of the models in this set,

and a robust controller is designed for this uncertain model using D-K iteration. The technique is illustrated on a sample flow configuration on a square

domain where the input affects the system through the boundary conditions.
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Introduction

Flow problems, in general, investigate the physical behavior

of liquids, gases and other materials which deform (i.e. flow)

under an applied shear stress. Examples include the flow of

water around submarine hulls, the air flow over the wings of

aircraft and the flow inside oil pipelines. The concept of flow

control is important from a technical point of view due its

potential benefits such as fuel savings for vehicles and effi-

ciency improvement for industrial processes (Gad-el Hak

2000; Bewley 2001). Fluid flow dynamics are usually governed

by complicated partial differential equations (PDEs; e.g.

Navier–Stokes [NS] equations) which are difficult to handle

(Acheson 1990; Batchelor 2000). The most common approach

for reducing these PDEs to simpler dynamical models is the

proper orthogonal decomposition (POD)/input separation

(IS)/Galerkin projection (GP) method. In this approach, one

first obtains a set of modes called POD modes, which capture

a sufficiently large amount of energy from the flow. The effect

of the input entering the system is captured through a process

called IS, which yields an additional mode called the actua-

tion mode. The expansion of the flow in terms of these modes

is substituted into the governing PDEs and the GP step is

applied to obtain the reduced order model of the flow process,

the states of which are called the time coefficients. Details of

the POD/IS/GP methods can be found in Sirovich (1987),

Holmes et al. (1996), Camphouse (2005), Efe and Ozbay

(2004), and Kasnakoglu et al. (2008). Although these methods

yield low-dimensional dynamic models, the models are non-

linear and thus it is very difficult to utilize them for analysis

and control design. Another difficulty in these methods is that

the POD modes spread out to the entire flow domain, and

hence it is not possible to associate a particular time coeffi-

cient with a specific spatial region. A final shortcoming is that

in the standard flow control approaches the models and con-

trollers are usually built around a single value of the flow

parameters, in particular a single value of the fluid viscosity.

The viscosity describes a fluid’s internal resistance to flow and

may be thought of as a measure of fluid friction. Since the

viscosity is dependent on various factors (e.g. temperature,

pressure), it is desirable to address situations where these fac-

tors and hence the viscosity varies with time. It is also difficult

to perform efficient and reliable measurements of a fluid’s
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viscosity in real-time, hence a controller design which does

not rely on such an information would be advantageous.
In this paper, a novel procedure for the modeling and con-

trol of flow problems is described, where the goal is to elimi-
nate the shortcomings of the standard modeling techniques

described above. The modeling part is based on wavelet trans-
form so as to achieve locality, whereas the control part is based
on robust control design via D-K iteration. The paper is orga-

nized as follows: Section 2 provides background information
on wavelet transform and the NS equations, Section 3 outlines
the modeling and control approach proposed, Section 4 illus-

trates the approach on a sample flow problem and Section 5
provides conclusions and future work ideas.

Background information

Wavelet transform

The wavelet transform is one of the most commonly used
techniques in signal processing on which a large number of
resources and studies are available (Chui 1992; Daubechies

and Bates 1993; Strang and Nguyen 1996; Mallat 1999).
Wavelets are scaled and translated versions of a finite-length
fast-decaying oscillating waveform called the wavelet function.

Wavelet transforms are advantageous over traditional Fourier
transforms for representing functions that have discontinuities
and sharp peaks, and for accurately deconstructing and recon-

structing finite, non-periodic and/or non-stationary signals.
The wavelet transform can be expressed as the integral of the
scaled and shifted versions of the wavelet function

C(scale, position)¼
Z 1
�1

f (t)w(scale, position, t)dt, ð1Þ

where C are the wavelet transform coefficients, f is the func-
tion to be transformed and w is the wavelet function which
depends on the type of wavelet family chosen. The recon-

struction of the function f is obtained by the summation of
the wavelet coefficients C multiplied by the wavelet function
w that is scaled and shifted properly. In practice, a sampled

version of the continuous wavelet transform described above
is used more commonly, which is called the discrete wavelet
transform (DWT). In DWT, the signal to be analyzed is fed

into high-pass and low-pass filters with certain cut-off fre-
quencies, and the resulting signal is downsampled to obtain
an equal number of data as the original signal (see Figure 1).

There are numerous families available for wavelet transform,

including BNC, Coiflet–Daubechies–Feauveau, Daubechies,
Haar, Mathieu, Legendre, Villasenor, and Symlet. It is also pos-
sible to apply higher levels of wavelet by applying the wavelet
decomposition process over and over to the approximation
coefficients. In Figure 2 a multilevel DWT is illustrated.

It is possible to increase the level of the decomposition fur-
ther; however, the reduction in the number of approximation

coefficients will also reduce the resolution so this needs to be
kept in mind when choosing an appropriate level.

NS equations

The NS PDEs are among of the most useful sets of equations
to describe the behavior of fluid flow. These equations arise

from applying Newton’s second law to fluid motion, under
the assumption that the fluid stress is the sum of a diffusing
viscous term plus a pressure term. There are many forms of
the NS equations and those to be used for this study are the
incompressible NS equations as given in the following:

@q

@t
þ (q � r)q¼ �rpþ mDq ð2Þ

r � q¼ 0 ð3Þ

where the second equation is the incompressibility equation.
In the above equation, m 2 R is the viscosity value,

p(x, y, t) 2 R is the pressure and q(x, y, t)¼ (u(x, y, t), v(x, y, t))
2 R

2 shows the flow velocity, where u and v are the horizon-
tal and vertical components, respectively. Details of the NS
equations can be found in various fluid dynamics texts includ-
ing Acheson (1990) and Batchelor (2000).

Figure 2. Multilevel two-dimensional wavelet transform.Figure 1. Discrete wavelet transform.
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Modeling and control approach

The first step in the modeling process is to record some snap-

shots at periodic time intervals using computational fluid

dynamics (CFD) simulations of the flow governed by the NS

equations (2) and (3). Recall that the goal in the modeling part

is to obtain the dynamics is a given region only (as opposed to

the entire flow domain). To achieve this effect, we select a set

of approximation coefficients whose corresponding wavelet

functions tightly cover the area of interest. In addition, we

wish to capture the flow behavior at different viscosity values

of the fluid. Thus, the CFD simulations are repeated at vari-

ous viscosity values within a range of interest and the snap-

shots are recorded for each value. The system input for the

simulations is chosen as a chirp signal (i.e. a sinusoid with

varying frequency) to excite various modes in the system

dynamics. Wavelet decomposition is then applied to these

snapshots. As mentioned in the previous section, various

options are available as to which wavelet family to choose for

the decomposition. Our experience suggests that for snapshots

resulting from CFD simulations of flow problems Daubechies

wavelet family yields good results. The reason for this is that

this wavelet structure is almost random, asymmetric, orthogo-

nal, has finite support area and yields a full reconstruction. In

addition, this transformation can be done quite efficiently,

which is necessary to process thousands of snapshot images in

a reasonable time. As mentioned previously, half of the coeffi-

cients obtained from the wavelet decomposition are approxi-

mation coefficients and the other half are detail coefficients.

To capture the general characteristics of the flow behavior, it

is usually sufficient to utilize only the approximation coeffi-

cients, but this statement must be verified nevertheless by

examining the reconstructions of the flow snapshots from the

approximation coefficients. For this purpose the thresholding

procedure is applied to the coefficients obtained from wavelet

transform. This process can be summarized as follows:

Y ¼ X , jX j > T ,
0, jX j ¶ T ,

�
ð4Þ

where X are detail coefficients, Y are the thresholded coeffi-

cients and T 2 Rþ is the threshold value. The expression

shown above states that if the absolute value of a coefficient is

greater than the threshold value, this coefficient is saved; oth-

erwise it is set to zero. The reconstruction process is then car-

ried out with the remaining coefficients. As mentioned above,

it is desirable that an acceptable reconstruction results even

when T ¼ 0; this implies that an sufficient reconstruction can

be obtained even when only the approximation coefficients are

used. This must be confirmed by comparing the approximate

reconstructions with the original snapshots, which can be done

by simple visual inspection and/or more sophisticated methods

such as computing the mean squared error; the former will suf-

fice for the purposes of this paper. Once the approximation

coefficients from the wavelet decomposition are at hand, the

next step is to construct a system model where these coeffi-

cients are the output data, and the input data is the chirp sig-

nal used to excite the flow. From this input–output data, a

discrete-time state space system as in the following is identified

using subspace system identification (N4SID) methods

n(tþTs)¼An(t)þBc(t), ð5Þ

y(t)¼Cn(t)þDc(t), ð6Þ

where Ts 2 R is sampling time, n 2 R
N is the state vector,

n 2 N is the degree of the system, c 2 R is the control input
and y 2 R

N is the output signal. The output signal consists of

the time variation of the approximation coefficients ai, that is

y(t)¼ a(t)¼ a1(t) a2(t) . . . aN (t)½ �T: ð7Þ

To briefly summarize, the main point in subspace system iden-
tification is the estimation of an extended observability matrix
of the form

Or ¼

C

CA

..

.

CAr�1

2
664

3
775: ð8Þ

It can be shown that the system output can be expressed in

terms of the observability matrix as

Yr(tk)¼Orn(tk)þ SrCr(tk)þV (t), ð9Þ

where

Yr(tk)¼

y(tk)
y(tkþ 1)

..

.

y(tkþ r�1)

2
6664

3
7775,Cr(tk)¼

c(tk)
c(tkþ 1)

..

.

c(tkþ r�1)

2
6664

3
7775, ð10Þ

Sr ¼

D 0 � � � 0 0

CB D � � � 0 0

..

. ..
. . .

. ..
. ..

.

CAr�2B CAr�3B � � � CB D

2
664

3
775 ð11Þ

and V (t) is the contribution of the output noise. The extended

observability matrix is estimated by correlating both sides of
(9) with quantities that eliminate the term SrCr(tk) and V (t)

asymptotically. After Or is estimated, C and A matrices are
found by the first row block of Or and the shifting property.
Next, the matrices B, D are estimated using linear least squares

utilizing the following alternate representation of (5) and (6)

y(tk)¼C(zI � A)�1Bu(tk)þDu(tk), ð12Þ

where z is the time shift operator. For detailed information
about subspace identification methods the reader is referred

to Ljung (1999), Van Overschee and De Moor (1996), and
Larimore (1996). The subspace identification method is

applied to each input–output data set corresponding to indi-
vidual viscosity values within the desired range, resulting in a

discrete-time linear time invariant (LTI) model of the form
(5) and (6) for each of these values. The final step in the mod-
eling process is to obtain an uncertain model to capture all of

these individual LTI models as a single nominal model plus a
multiplicative uncertainty, as illustrated in Figure 3.

In the figure G is the nominal plant, DI is a stable system

such that k DIk1¶ 1 and wI is a weighting function. The
functions DI and wI form a multiplicative uncertainty on the
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nominal plant G so that the overall uncertain system Gp is

expressed as

Gp¼G(1þwIDI ): ð13Þ

The nominal plant G is usually selected so that the effect of

the term wIDI is small. For the problem of modeling flow con-
ditions under various viscosity values, it generally suffices to
pick the plant corresponding to a viscosity value near the cen-

ter of the desired range. The worst-case deviation of the other
models from this nominal model can then be used to fit a mul-
tiplicative uncertainty using techniques such as log-Chebyshev
magnitude design (Oppenheim and Schaffer 1975). Once this

uncertain model is obtained, a robust controller is synthesized
via the l-synthesis D-K iteration method. This method is an
approximation to l-synthesis control design, whose objective

is to minimize the structure singular value l of the robust per-
formance problem related to the uncertain system to be con-
trolled. The uncertain system to be controlled is an open-loop
interconnection containing the nominal plant, uncertainty

model and possibly weighting filters. Usually the inputs to the
system are the disturbances and the output is an error to be
minimized (e.g. tracking error). The goal is to construct a sta-
bilizing controller K such that the robust performance l value

is as small as possible. The D-K iteration consists of a series
of minimizations. First the D variable associated with the
scaled l upper bound is fixed and a minimization is carried

out on the controller variable K. Then, the controller variable
K is fixed and a minimization is performed over the D vari-
able. The iteration is repeated as necessary until a controller
design is obtained which performs robustly to the modeled

uncertainty. The D-K iteration technique may not converge
to the minimum l possible, but the results are satisfactory for
the most part. Hence, the D-K iteration approach has enjoyed

success in many real-life applications including oscillation
suppression in flexible structures, flight control and chemical
process control. Details on D-K iteration and its applications
can be found in Balas and Doyle (1994), Doyle et al. (1986),

Packard et al. (1993), and Stein and Doyle (1991).
In the next section we provide an example to illustrate the

modeling and robust control design approach outlined above.

Application example

In this section the modeling and control approaches men-
tioned in the previous section are illustrated on a sample

application. For this purpose we consider the dynamical

modeling and control of a fluid flow in the middle of a two-

dimensional square region X¼ ½0, 1� � ½0, 1� � R
2, where the

fluid viscosity may vary between ½0:000001, 1� m2=s. This visc-

osity range represents a large number of commonly encoun-

tered fluids including acetic acid, ethyl alcohol, crankcase oil,

gear oil, benzene, crude oil, fuel oil, gasoline, tar, water and
so on. The control goal is to regulate the longitudinal flow

velocity at the center of the flow domain. In two dimensions,

the NS equations (2) and (3) can be expressed as

@u

@t
þ @u

@x
uþ @u

@y
v¼ � @p

@x
þ m

@2u

@x2
þ @2u

@y2

� �
, ð14Þ

@v

@t
þ @v

@x
uþ @v

@y
v¼ � @p

@y
þ m

@2v

@x2
þ @2v

@y2

� �
, ð15Þ

where q(x, y, t)¼ (u(x, y, t), v(x, y, t)) 2 R
2 is the flow velocity

with u and v being its horizontal and vertical components,

and p(x, y, t) 2 R is the pressure. Initial conditions and bound-

ary conditions for the flow are given as follows:

u(x, y, 0)¼ v(x, y, 0)¼ 0, ð16Þ

u(x, 0, t)¼ u(x, 1, t)¼ 1, ð17Þ

v(x, 0, t)¼ v(x, 1, t)¼ 0, ð18Þ

u(0, y, t)¼ 0,
@v

@x
(0, y, t)¼ 0, ð19Þ

u(1, y, t)¼
0, y 2 ½0, 0:42),
c(t), y 2 ½0:42, 0:58�,
0, y 2 (0:58, 1�,

8<
: ð20Þ

v(1, y, t)¼ 0, ð21Þ

where c is the control input. The problem described above is

an abstract one created specifically to test the effectiveness of

the approach proposed in this paper; however, if one desires

to attribute a physical meaning, it is possible to think of the

flow domain as a cavity with the top and bottom walls being

driven at constant speed, the left wall being a membrane or

filter allowing the fluid to pass horizontally, and the right
wall being stationary with a small slit of width 0.16 positioned

at its center through which fluid can be pumped or sucked.

The first step in the modeling process is to simulate the NS

equations under a varying frequency sinusoid (chirp signal)

and under different viscosity values in the range ½0:000001, 1�.
For this purpose Navier2D, a NS CFD solver for MATLAB

(Engwirda 2005), is used and the snapshots are recorded for
1000 time steps on a 50� 50 uniform grid of the spatial

domain. Wavelet decomposition is then performed on these

snapshots using functions from the MATLAB Wavelet

Toolbox. We have experimented with many wavelet families

and decomposition levels and the best results (i.e. the least

error in reconstruction) were obtaining using the Daubechies-

4 wavelet and a two-level decomposition. To verify that this

wavelet function and level is adequate for the method consid-
ered, a flow snapshot together with its wavelet decomposition

and its reconstruction using only the approximation

Figure 3. Uncertain system consisting of a nominal model and

multiplicative uncertainty.
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coefficients (i.e. after thresholding the detail coefficients to

zero) are shown in Figure 4.
It can be seen from the figure that the original snapshot

and its reconstruction are almost identical. Such a comparison

was performed with other snapshots as well and the results

were equally satisfactory. The next step is to select a number

of approximation coefficients whose corresponding basis

functions cover the area of interest. Since we are interested in

the center region only, for our case it suffices to select the four

basis functions that are closest to the center of the domain, as

shown in Figure 5.
The next process is to fit a linear state-space model for

each viscosity value to the time dynamics of these four

approximation coefficients. We select 10 viscosity values in

the range ½0:000001, 1� to build these models. The 10 particu-

lar viscosities selected are m1¼ 0:00000100, m2¼ 0:00001931,

m3¼ 0:00037276, m4¼ 0:00719686, m5¼ 0:07142950, m6¼
0:21428650, m7¼0:37275937, m8¼0:57142900, m9¼0:78571450

and m10¼1:00000000, which are approximately logarithmi-

cally spaced so that more values are concentrated towards the

lower limit 0:000001. This is beneficial for the modeling pro-

cess since the flow dynamics show greater variation for lower

viscosities due to turbulent characteristics and therefore more

samples are needed from these values for an accurate model.

Selecting more than 10 values for m could also improve the

model; however, this will not be necessary for the particular

problem at hand as it will be observed shortly that the model

resulting from the values above is satisfactory.
As mentioned in the previous section, a subspace system

identification (N4SID) is carried out to obtain these model by

the help of functions from the MATLAB System

Identification Toolbox. Based on the input output data and

the Hankel singular values of the resulting models (see

Glover 1984), it can be shown that a system order of 6 is

Figure 5. Four approximation coefficients for describing the middle of the flow region.

Figure 4. Original snapshot (top left), wavelet coefficients resulting

from two-level decomposition using Daubechies-4 wavelet (bottom left),

thresholded wavelet coefficients (bottom right) and snapshot

reconstructed from thresholded coefficients (top right).
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sufficient for the models. Figure 6 shows the outputs of these

models built in comparison with the actual time variation of
the four approximation coefficients selected to represent the

central region. It can be seen that there is good agreement

between the actual values and those produced by the models.

The error is almost zero for higher viscosity values and

increases slightly with the decrease in viscosity. This is
expected since at lower viscosity values the turbulent charac-

teristics of the flow become more dominant, hence the

dynamics become more difficult to capture.
Next, these 10 models are combined into a single uncertain

model which consists of a second-order multiplicative uncer-

tainty model and a nominal model, which is simply the model

built for m7¼ 0:37275937. The reason for selecting this viscos-

ity value is that it yields the smallest magnitude for the uncer-

tainty model. Figure 7 shows a Bode plot comparing the

norm of the difference between the nominal model and the
array of models at different viscosity values versus the magni-

tude of the second-order multiplicative weight.
It is seen that the range of behavior of the multiplicative

uncertainty includes the array of systems at different viscos-

ities for the entire frequency range. The next step is to a build

a robust controller to achieve the desired tracking for this

uncertain system via D-K iteration algorithm. The controller

synthesis is carried out using the dksyn command of the

MATLAB Robust Control Toolbox, which results in a 12th-
order controller, which is of quite high order for efficient

incorporation into CFD simulations. However, examining the

2 4 6
−2

−1

0

1

2
ν=0.000001, γ=ChirpInput

2 4 6
−2

−1

0

1

2
ν=0.000019, γ=ChirpInput

2 4 6
−4

−2

0

2

4
ν=0.000373, γ=ChirpInput

2 4 6
−1

−0.5

0

0.5

1
ν=0.007197, γ=ChirpInput

2 4 6
−1

−0.5

0

0.5

1
ν=0.071429, γ=ChirpInput

2 4 6
−1

−0.5

0

0.5

1
ν=0.214286, γ=ChirpInput

2 4 6
−1

−0.5

0

0.5

1
ν=0.372759, γ=ChirpInput

time (secs)
2 4 6

−1

−0.5

0

0.5

1
ν=0.571429, γ=ChirpInput

time (secs)
2 4 6

−1

−0.5

0

0.5

1
ν=0.785714, γ=ChirpInput

time (secs)

Figure 6. Approximation coefficients (solid) versus the results outputs of the models fit to data (dashed) for different viscosity values.
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Hankel singular values it is seen the controller can effectively

be approximated by a third-order system, which is acceptable.

The transfer function for this controller is as follows:

K(z)¼ 0:1334z2 � 0:2658zþ 0:1324

z3 � 2:98z2þ 2:96z� 0:98
: ð22Þ

The final step is to perform CFD simulations in closed-loop

with the controller (22) above. In the simulations the viscosity

value m is varied between its limits 0:000001 and 1, while the ref-

erence yref to be tracked by the midpoint of the domain is varied

between �0:5 and 0:5. White noise disturbances of magnitude

0:05 have also been added to the system input and output.

Figure 8 shows the flow snapshots obtained from the simula-

tions and Figure 9 shows the output value at the center point,
the tracking error, the control input, and the variation in m. It
can be seen that the reference is tracked closely despite the var-

iations in viscosity. Slight deviations are observed around the
region where the viscosity is near its lower limit (around t¼ 5

seconds), which is expected since these intervals correspond to

the situation where the flow characteristics are more turbulent.
For the sake of comparison with the D-K iteration based

robust controller, we have designed a simple PID controller
using only the nominal model for the system and have

Figure 8. Flow snapshots from CFD simulations of the closed-loop system with D-K iteration based controller.

0 5 10 15 20
−2

0

2

e

0 5 10 15 20
−1

0

1

y

0 5 10 15 20
−10

0

10

u

0 5 10 15 20
0

0.5

1

nu

Figure 9. Time variations of key signals for D-K iteration based

control. First figure (from top): Tracking error. Second: Longitudinal

speed at the center (blue) and reference signal (green). Third: Control

input. Fourth: Viscosity variation. Color refers to the online version of

this article.
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Viscosity variation. Color refers to the online version of this article.
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repeated the CFD simulations for this case. Various auto-

mated tuning algorithms were considered to design the PID

controller and the best results that could be obtained were

with the IMC tuning based approach (Chien and Fruehauf

1990). The closed-loop simulation results for this case are

shown in Figure 10.
It can be seen from the figure that the controller perfor-

mance is acceptable for the relatively less problematic situa-

tions of high viscosity. However, for the case when the

viscosity is low (around t¼ 5 seconds) and thus the flow char-

acteristics are turbulent, there is a considerable deviation

from the reference to be tracked and the tracking perfor-

mance is clearly inferior to the D-K-based controller case

(Figure 9).

Conclusions and future work

In this paper a new approach for the modeling and control

of flow problems has been introduced to achieve local dyna-

mical modeling and control when the fluid viscosity is

unmeasurable and non-constant. The modeling relies on

wavelet transform of the flow snapshots obtained from CFD

simulations. The control synthesis relies on applying the D-K

iteration synthesis method to an uncertain model built by

encapsulating separate models at each viscosity value. This

results in a robust controller that can control the system for

the desired range of viscosities without requiring online visc-

osity measurements. The approach has been illustrated on a

sample flow problem where the goal is to regulate the longi-

tudinal speed at the center of the flow domain. It is seen

through CFD simulations that the closed-loop systems suc-

cessfully tracks a given reference even when the fluid viscos-

ity is varying continually. The results have been compared

with a PID-based controller based on a nominal model and

it is seen that the robust controller based on D-K iteration is

superior to the PID controller, especially at lower values of

the viscosity where the flow characteristics become more

turbulent.
Future research directions include incorporating alterna-

tive robust control synthesis approaches and testing the ideas

on more complicated flow control problems.
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