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Abstract

In this paper a systematic modeling and control approach for flow problems is considered. A nonlinear

Galerkin model is obtained from the partial differential equations (PDEs) describing the flow; and a Linear

Parameter Varying (LPV) model is constructed to approximate the Galerkin model, where the parameter

variation of the LPV model is controller by an adaptation mechanism. The LPV model is then treated as

a surrogate on which the control design is carried out, where the parameter variations provide a range of

uncertainty in which the control design must perform satisfactorily. It is shown that if certain conditions

are met, then such a controller design will succeed when applied to the nonlinear Galerkin model. The ideas

developed in the present paper are illustrated through a flow control example governed by the Navier-Stokes

(NS) PDEs, where it is observed that a controller design based on the proposed approach is successful in

achieving a desired regulation within the flow domain. In addition, it is seen that the LPV model can be used

to predict certain robustness properties of the closed-loop system.

Key Words: Flow control, Navier-Stokes, linear parameter varying (LPV) proper orthogonal decomposi-

tion (POD), Galerkin projection (GP), input separation (IS), adaptive control, robust control, disturbance

rejection

1. Introduction

The flow of fluids is a phenomenon observed everywhere in every aspect of life. The flow of air around the
body of an airplane or automobile, water flow around the hull of a ship or submarine, the winds in the
atmosphere, the waves in the oceans, the motion of water or petroleum through pipelines are all examples
of this common and important concept. The ability to understand and have control over fluid flow is a topic
of active research, the benefits of which include reducing fuel costs in vehicles and improving the effectiveness
of industrial processes [1, 2]. Among numerous studies on flow control one finds research regarding flow control

in aircrafts and airfoils [3, 4], control of channel flows [5, 6, 7, 8], control of turbulent boundary layers [9],
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control of combustion instability [10], stabilization of bluff-body flow [11], control of cylinder wakes [12, 13, 14],

control of cavity flows [15, 16, 17, 18, 19], optimal control of vortex shedding [20, 21] and control of fluid flow

in capillaries [22, 23].

For the mathematical modeling of fluid flow, partial differential equations (PDEs) such as the Navier-

Stokes (NS) and Burgers’ equations are commonly used. While control design can be performed directly

on these PDEs [24, 25, 26, 27, 28], it is preferable to obtain simplified models, using Proper Orthogonal

Decomposition (POD) and Galerkin Projection (GP) methods [29, 30] together with input separation (IS)

techniques [31, 32, 33, 34]. The resulting models are called Galerkin models and have been employed widely in

applications, such as the control of cylinder wakes [12, 13, 14] and the control of cavity flows [15, 16, 17, 18, 19].
Despite their widespread use in flow control applications, Galerkin models are nonlinear, thus special and
complicated nonlinear control theoretic methods must be utilized for analysis and control design. One possibility
towards further simplification is to use linearization; however, this will limit the analysis and control design to a
single operating condition, which is unacceptable for many problems. A less restrictive alternative is to utilize
Linear Parameter Varying (LPV) models to represent the flow process. LPV models have a linear structure,
but some of the system parameters may vary with time. Such models have been used in the control of steam
generators in nuclear power plants [35], robust control of combustion instability [36], control of high-performance

turbofan engines [37], identification and gain-scheduled control of rotating stall and surge [38], control of driven

cavities [39], control of structural dynamics with aerothermoelastic effects [40], and gain-scheduled velocity/force

control of electrohydraulic servo systems [41].

While LPV models are less restrictive compared to linearization based models and may provide an
attractive alternative to dealing directly with nonlinear Galerkin models, the lack of standard methodologies to
obtain LPV models for flow control processes is a major difficulty. In this work we start from a nonlinear Galerkin
model and develop a systematic approach to represent it with an LPV model, through the use of techniques
based on adaptation [42, 43, 44, 45, 46]. The idea is to first utilize POD/GP/IS techniques to obtain a reduced
order nonlinear Galerkin model representing the flow, transform this model into a form that is linear in its
parameters (Section 2), and build an adaptation mechanism to yield an LPV model approximating the nonlinear

Galerkin model (Section 3). The usefulness and potential of such an approach for control design is illustrated

by designing an H∞ controller on the LPV model (Section 4), and showing that this controller will also succeed

when applied to the nonlinear Galerkin model, provided that certain conditions are satisfied (Section 5). The
ideas developed in the paper are demonstrated on a flow control example, where the fluid dynamics are governed
by the Navier-Stokes PDEs (Section 7). The paper is finalized with conclusions, discussions and ideas for future

work (Section 8).

2. Modeling of the flow process

The first step is to obtain a dynamical model for the flow process that is amenable to the design of an adaptation
mechanism and a controller. Let H be a real Hilbert space with inner product 〈·, ·〉 : H × H → R . Let

q : Ω × R+ → R , q(·, ·, t) ∈ H , q(x, y, ·) ∈ Ck and k ∈ N . Here, t ∈ R+ is the temporal variable, Ω ⊂ R
2

is the flow domain and x ∈ Ω is the spatial variable. The evolution of the flow field is governed by a partial
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differential equation (PDE) of the form

q̇ = X(q), (1)

where the operator X : H → H includes spatial derivatives. Equation (1) is subject to the initial condition

q(x, 0) = qinit(x), (2)

where qinit ∈ H , and subject to the boundary conditions

(Bi(q, u))(x, t) = bi(x, t), i = 1 . . . nb (3)

where x ∈ ∂Ω, t ∈ R+ , Bi : H × Ck → H , bi ∈ H , and nb ∈ N . The control input u ∈ R acts through the
boundary conditions. The operator B may include spatial derivatives.

The task considered in this section is to transform the infinite order PDE described in (1)–(3), into a form
that is suitable for adaptation and control design, i.e. a finite system of ordinary differential equations which
are linear in the parameters θ and to which u enters explicitly. This means obtaining an ordinary differential
equation system of the form

ȧ = fθ(a, u) = Φ(a, u)θ , a(0) = a0 (4)

where fθ : R
n × R → R

n , θ ∈ R
p , a ∈ Rn and p, n ∈ N in such a way that (4) represents the original

PDE (1)–(3) in some sense. The approach that will be utilized for this purpose in based on a POD/GP/IS

method [34, 47, 48], a brief review of which is provided next.

Define qk(x, y) := q(x, tk) as the snapshot of the flow taken at time tk and let {qk}ns

k=1 ⊂ H be an

ensemble of ns ∈ N snapshots collected at times {tk}ns

k=1 . Let q0 := E[qj] , where E is a linear averaging

operation E[qj] = ns
−1

∑ns

i=1 wjqj for given weights wj > 0. From the snapshots {qk}ns
1 , the POD procedure

is used to obtain a set of POD modes {φi}n
1 ⊂ H and a set of modal coefficients {ai}n

1 ⊂ R so that1

q(x, t) ≈ q0(x) +
n∑

i=1

ai(t)φi(x). (5)

A dynamical system that approximates the flow dynamics can be obtained by Galerkin projection as ṙ = XS(r),

where r := q0 +
∑n

i=1 ajφj ∈ S , and S := q0 + span{φ1, . . . , φn} . Simplification yields the set of nonlinear

ODEs
ȧk = 〈X(r), φk〉, k = 1 . . . n. (6)

Note that at this stage, the effect of the actuation is still embedded in the coefficients of the Galerkin system
and does not appear explicitly in (6). Therefore an input separation (IS) method based on expanding the flow
field in terms of baseline POD modes and actuation modes will be utilized to separate the effect of the input
from the Galerkin system coefficients and make it appear as a stand-alone term. The baseline modes φi are

extracted from the unactuated flow using a standard POD procedure as in (5). Next, an innovation flow field

is defined as q̃(x, t) := q(x, y, t) − PSq(x, t), where S := q0 + span{φi} and PS is the projection operator onto

S . Forced flow snapshots are projected onto the span of the baseline (unactuated) POD modes to obtain the

1Whenever convenient, we will use Einstein notation to omit summation signs and write q(x, t) ≈ q0(x) + ai(t)φi(x) in place of
(5).
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portion of the controlled flow that is recovered by S , whereas the innovation yields the information which is
not captured by S and is due to the effect of the actuation. Next, the actuation modes are built from the
innovations as follows. For simplicity assume that we only use a single scalar input u . We then consider an
expansion of the form

q(x, t) ≈ q0(x) +
n∑

i=1

ai(t)φi(x) + ψ(x)u(t), (7)

where the actuation mode ψ is to be chosen so as to minimize the energy not captured by such an expansion.
An optimization problem on the Hilbert space H can be defined as finding

ψ� = arg min
ψ∈H

J(ψ), (8)

where J(ψ) := E
[
‖q̃k − ukψ‖2

]
. The element ψ∗ ∈ H will be chosen as the actuation mode. The squared norm

of the velocity represents the energy contained in the flow. Therefore, among all augmented POD expansions in
the form given in (7), where the input u directly appears as the coefficient of ψ , the choice ψ = ψ∗ is optimal,
in the sense that the energy not captured by this expansion achieves its minimum for ψ = ψ∗ . It was shown
in [34] that ψ∗ solving the optimization problem (8) can be obtained as

ψ∗ =
E [ukq̃k]
E [u2

k]
. (9)

The Galerkin model is then obtained by substituting (7) into (6), which gives a dynamics of the form

ȧi = Ci + Likak + Lin,iu + Qijkakaj + Qain,ikaku + Qinu2 (10)

for i = 1, . . . , n . Equation (10) can be expressed compactly as

ȧ = C + La + Linu + Q(a, a) + Qain(a, u) + Qin(u, u). (11)

Equation (11) can be simplified further by eliminating the constant term C if the system has an equilibrium
at a = ad . In this case it holds that

C + Lad + Q(ad, ad) = 0. (12)

One can then define a shift of coordinates ã = a − ad , which yields

˙̃a = L̃ã + Q(ã, ã) + L̃inu + Qin(u, u) + Qain(ã, u), (13)

where

L̃ = L + Q(·, ad) + Q(ad, ·)

L̃in = Lin + Qain(ad, ·).

Note that system (13) has an equilibrium at ã = 0, which corresponds the equilibrium state a = ad .

While the system in (13) is nonlinear in its state a and its input u , it is linear in its parameter values

contained in L̃ , Q , L̃in , Qin and Qain , since there are no terms involving the multiplication of two parameter
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values. To write the dynamics in a form where this linear dependence is apparent, let us first build the parameter
vector θ as

θ := col
{
L̃(:), L̃in(:), Q(:), Qin(:), Qain(:)

}
, (14)

where col stands for column vector, i.e. col{x1, x2, . . . , xn} = [xT
1 xT

2 . . . xT
n ]T , and L̃(:) denotes the column

vector formed by stacking all elements of L on top of each other, e.g.

L̃(:) := col
{
L̃11, L̃21, . . . , L̃n−1,n, L̃nn

}
. (15)

The definitions for L̃in(:), Q(:), Qin(:) and Qain(:) follow similarly. One can then define Φ : R
n×R

m → R
n×R

p

such that

˙̃a = Φ(ã, u)θ, (16)

where Φ(ã, u) is a n × p matrix with elements {Φ(ã, u)ij | i = 1, . . . , n, j = 1, . . . , p} such that Φ(ã, u)ij ; the
element at row i and column j , corresponds to the contribution of the j th parameter in θ to the ith state of ã .

For instance, from (14) one sees that the second parameter in θ is the second parameter of L̃ , which from (15)

is seen to be L̃21 . Also, it can be seen that the second element in the state vector ã = col{ã1, ã2, ã3, . . . , ãn} is

ã2 . Looking at (13), if we highlight the portion of the dynamics of ã2 where the term L21 appears,

˙̃a2 = . . . + L21ã1 + . . . ,

which implies that Φ(ã, u)22 = ã1 . Other elements of Φ(ã, u) can be constructed similarly so as to write the

system in the desired linear parameter form shown in (16).

From now on we will drop the tildes in (16) to simplify the notation and write

ȧ = Φ(a, u)θ. (17)

It will be implicitly understood that the system has already been shifted by the equilibrium value.

3. Approximating the galerkin system with an adaptation based

linear parameter varying model

The goal in this section is to design a linear parameter varying (LPV) system of the form

˙̂a(t) = L̂(t)â(t) + L̂in(t)u(t) + L̂err(t) (â(t) − a(t)) , (18)

which approximates the system in (17); that is, if ed := â− a , then ed should be kept “small,” where smallness

can be in terms of amplitude (keeping ‖ed‖∞ small), energy (keeping ‖ed‖2 small) or any other means to

quantify ed . The variation of L̂ , L̂in and L̂err with time will be controlled through an adaptation mechanism.
The states â of the LPV model above will be referred to as the adapted states or as the reconstructed states.
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First, note that the Galerkin system in (17) can be written as

ȧ = Φ(a, u)θ

ȧ = ΦL(a, u)θL + ΦN(a, u)θN

ȧ = La + Linu + Q(a, a) + Qain(a, u) + Qin(u, u), (19)

where we have split the linear and nonlinear parts of the Galerkin system as

ΦL(a, u)θL := La + Linu

ΦN(a, u)θN := Q(a, a) + Qain(a, u) + Qin(u, u). (20)

We consider a linear model of the form

˙̂a = ΦL(a, u)θ̂L − ked = L̂a + L̂inu − ked (21)

whose parameter vector θ̂L will be modified by an adaptation mechanism to match the Galerkin system (19).
For later reference we also state the dynamics of ed as

ėd = ˙̂a − ȧ = ΦL(a, u)θ̂L − ked − ΦL(a, u)θL − ΦN (a, u)θN . (22)

The adaptation mechanism considered is of the following form

˙̂
θL = −ΦT

L(a, u)ed − Υ(θ̂L, a, u)− Ψ(θ̂L), (23)

where Υ(θ̂L, a, u) := θ̂∗L‖col(a, u)‖2 + θ̂∗L‖col(a, u)‖4 ,

θ̂∗L :=
{

0, θ̂L = 0;
θ̂L/‖θ̂L‖2, θ̂L 	= 0,

(24)

Ψ(θ̂L) :=
{

kεθ̂L, ‖θ̂L‖ < b;
kdθ̂L, ‖θ̂L‖ ≥ b,

(25)

and k, kε, kd, b ∈ R+ are the adaptation constants. The constant k must be set high enough so that the
adaptation error ed can be kept to a reasonable value, but excessively high values of k may lead to undesirable

overcorrection and oscillatory behavior. The constants kε, kd, b are related to the term Ψ(θ̂L), which adds

dissipation to the adaptation dynamics (23) and ensures the boundedness of the parameter trajectories. The

value of kε is set to a small value so that for ‖θ̂L‖ < b the effect of the term Ψ(θ̂L) to the adaptation dynamics

is negligible. The value of kd is set to a large value so that for ‖θ̂L‖ ≥ b , the dissipation term dominates the
dynamics, and hence prevents the unboundedness of the parameter trajectories. The value b determines the

range in which the parameter vector θ̂L can vary freely, and beyond which the dissipative term Ψ(θ̂L) will
interfere. This constant is determined in a two-step procedure: First b is set to a very large value, so that the

dissipative term Ψ(θ̂L) practically has no effect on the dynamics. The Galerkin system system and adaptation
scheme are run with a rich variety of inputs including constant values, sine waves, square waves, chirp signals
etc., covering the amplitude and frequency ranges of interest. From these experiments the range Θ in which
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Figure 1. Block diagram using a LPV model to approximate the nonlinear Galerkin model, for a reference tracking
problem.

the parameter vector θ̂L varies is determined. The parameter b is then set to a certain percentage of ‖Θ‖ , e.g.

b = 0.9‖Θ‖ . With this value of b , the term Ψ(θ̂L) starts providing dissipation to the adaptation dynamics as

θ̂L begins to approach the boundaries of the allowable range Θ, preventing unbounded growth of the parameter
vector.

4. Control design

Consider the Galerkin system given by the state dynamics (19). By using the adaptation scheme (23) with
properly selected values of its constants, the error ed = â− a can be made to remain bounded and small. This
means that the state trajectories of the system (21) will remain close to those of the Galerkin system (19). We
will provide a justification for this statement shortly, but for now, let us just assume that this is the case. Then,
if (21) is rearranged as

˙̂a = L̂a + L̂inu − ked

˙̂a = L̂(â − ed) + L̂inu − ked

˙̂a = L̂â + L̂inu + L̂erred, (26)

where L̂err = −(L̂ + kI), one can then observe that (26) is of the same form as (18). Thus, if the signal ed is

small, one can regard system (21) as a linear parameter-varying system that approximates the original system,
with the signal ed entering as an external disturbance. With this interpretation, the controller design can be
performed on the LPV system (26), instead of the nonlinear Galerkin model (19). In this section we will consider
one such design, an illustration of which is given in Figure 1. The objective of the control design is to track a
given reference signal r , while limiting the effect of the disturbance signal ed on the tracking error er := y − r .
For simplicity, the output of interest (y ) is assumed to be a linear expression in terms of the Galerkin system
state a and input u

y = Louta + Lout,inu. (27)

Expressing the output in terms of the adapted state â gives

y = Lout(â − ed) + Lout,in

= Loutâ + Lout,inu + Lout,erred, (28)
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where Lout,err = −Lout . Augmenting with the state dynamics (26) yields the system

˙̂a = L̂â + L̂inu + L̂erred (29)

y = Loutâ + Lout,inu + Lout,erred. (30)

The task to be achieved can be stated as an H∞ control problem of determining a stabilizing controller
for this system such that the L2 gain from ‖col(ed, r)‖2 to ‖er‖2 is less then a desired value γmax . In other
words,

‖er‖2 < γ‖col(ed, r)‖2 (31)

for all θ̂L ∈ Θ, where γ < γmax ; here γ is called the H∞ cost. This problem has been studied extensively for
linear systems and efficient solution methods are available, including the cases when there is uncertainty/time-
variation on system parameters, and including the situations when one must impose constraints on the system
poles [49, 50, 51]. Hence the controller design can be carried out in a straightforward manner using these
available methods, most of which are available as built-in routines in common scientific computing software
(e.g. MATLAB).

5. Analysis of the closed-loop system

The main question at this point is whether the controller designed on the system (29)–(30) will perform

satisfactorily when applied to the nonlinear Galerkin model (19) representing the flow process. The theorem
below answers this question to the affirmative, provided that some conditions are satisfied.

Theorem 5.1 Assume that there exists a linear dynamical controller K

ζ̇ = AKζ + BKer (32)

u = CKζ + DKer (33)

for the LPV system (29)–(30) that achieves a finite L2 gain of γ from col(ed, r) to er for the closed-loop

system (see Figure 1), for all θ̂L ∈ Θ, such that γ satisfies

0 < γ2 < k − k2
6

2
− k2

7

2
− 1, (34)

where

k6 :=max{‖L‖, ‖Lin‖} (35)

k7 :=max
{
‖Q‖ +

1
2
‖Qain‖, ‖Qin‖ +

1
2
‖Qain‖

}
. (36)

Then, when the controller K in (32)–(33) is applied to the nonlinear Galerkin system with state dynamics (19)

and output (27), it holds that:

1. If r is bounded, then all trajectories of the closed-loop system are bounded.
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KASNAKOĞLU: Modeling and control of flow problems by adaptation-based...,

2. The closed-loop system has finite L2 gain from r to er , and from r to ed . Specifically,

‖er‖2 ≤ γ‖r‖2, (37)

‖ed‖2 ≤
(

γ2

k − k2
6
2 − k2

7
2 − γ2

) 1
2

‖r‖2. (38)

Proof See Appendix A.

From the above theorem one can see that, for the controller designed on the LPV system to be successful

on the nonlinear Galerkin model, the cost γ must be below a certain value, namely (k − k2
6
2 − k2

7
2 − 1)

1
2 . Note

that the term inside the square root must be positive, so this condition implicitly poses a restriction on the

adaptation gain k in that k <
k2
6
2 − k2

7
2 − 1 must hold. If (34) is satisfied then from (37) and (38) one can

see that the reference signal r is able to energize the tracking error er , and the adaptation error ed by only
a limited amount, determined by the L2 gains in (37) and (38). Lower values of the cost γ will reduce the
tracking error er , as well as the the adaptation error ed . Higher values of the adaptation gain k have no effect
on er , but seem to reduce ed .

Remark 5.1 At this point we remark that the main focus of the paper is to present a systematic procedure to
obtain LPV models for Galerkin systems using adaptation mechanisms. Once this model is at hand, we leave it
to the designer to chose from the various options available as to how the controller can be obtained. A couple
of these possibilities include (but are not limited to):

1. One can carry out a parametric controller design; i.e, one can build an LPV controller which utilizes the

parameter vector θ̂L in real-time, using several established methods in literature such as the self-scheduled
H∞ controller design method described in [51]. In this method one first solves a set of LMIs at the

vertices of the polytope in which the parameter vector θ̂L varies, which yields the controller matrices at
these vertices. During closed-loop operation, the controller matrices are recomputed at every time instant

t by utilizing a convex decomposition based on the current value of θ̂L(t) .

2. One can carry out a classical robust control design approach. In this approach the parameter vector θ̂L

is not utilized online, but the LPV model built is preprocessed to obtain: i) a range of uncertainty Θ in

which the parameter θ̂L will vary, and ii) a nominal model. For the former one can apply a number of

diverse input signals (e.g. sinusoids, square waves, white noise, etc.) to the system and the record the

trajectories of the parameter vector θ̂L , the upper and lower bounds of which will determine the range Θ.
For the latter, i.e. to obtain a nominal model, one can select the centroid of the box Θ and instantiate
the LPV model at this parameter value. This will yield a nominal LTI model that is independent of the

parameter θ̂L . Once the nominal model and the range for θ̂L is known, we are done with the LPV model;

unlike the LPV controller design approach mentioned in the item above, the parameter θ̂L is not used in
real-time by the controller. Having obtained a nominal LTI model and a knowledge of the uncertainty on
this model, one can employ standard robust control approaches to obtain the controller and evaluate it in
this range of uncertainty.

827



Turk J Elec Eng & Comp Sci, Vol.18, No.5, 2010

As indicated earlier, the main focus of this paper is modeling, so we do not dictate a particular controller design
strategy as long as the resulting controller satisfies the conditions of Theorem 5.1. However, for the sake of
completeness, in the case study example given in Section 7, we adopt the second approach above since it is
relatively easy to implement using the readily available routines in MATLAB. In particular we employ an H∞
design with pole placement constraints, where the idea is to solve a trace minimization problem subject to LMI
constraints to guarantee a certain H∞ performance while at the same time assuring that the systems poles will
be clustered in a desired region. Full details of this method can be found in [51] and it is readily implemented in
MATLAB by the function h2hinfsyn.

6. Summary of steps

Below we summarize the steps for the modeling and the controller design approach considered in the paper for
flow control problems:

1. Obtain a Galerkin model from the Navier-Stokes PDEs using POD/GP/IS.

2. Set up the LPV model and the adaptation mechanism.

3. Apply a number of diverse input signals to the system and determine the parameter range Θ for the LPV
model.

4. Design an H∞ controller on the LPV model, such that the controller archives a desired performance γ ,
where γ satisfies the criteria in Theorem 5.1.

5. Apply the controller to the nonlinear Galerkin model, simulate and evaluate the results.

6. Apply the controller to the Navier Stokes PDEs, perform computational fluid dynamics (CFD) simulations
and evaluate the results.

In the next section we illustrate the application of these steps to a sample flow control problem.

7. Example: Boundary control of 2D incompressible navier-stokes
equations on a square domain

7.1. Problem description

We consider the two-dimensional, incompressible, nondimensionalized Navier-Stokes equation

∂q

∂t
+ (q · ∇)q = −∇p +

1
Re

∇2q (39)

∇ · q = 0, (40)

where Re is a constant value called the Reynolds number. Let p(x, y, t) ∈ R denote the pressure, and

q(x, y, t) = (qu(x, y, t) qv(u, x, t)) ∈ R
2 denote the flow velocity, where qu and qv are the components in
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KASNAKOĞLU: Modeling and control of flow problems by adaptation-based...,

the longitudinal and latitudinal directions, respectively. In the given coordinates, (39) reads as

∂qu

∂t
+

∂qu

∂x
qu +

∂qu

∂y
qv = −∂p

∂x
+

1
Re

(
∂2qu

∂x2
+

∂2qu

∂y2

)

∂qv

∂t
+

∂qv

∂x
qu +

∂qv

∂y
qv = −∂p

∂y
+

1
Re

(
∂2qv

∂x2
+

∂2qv

∂y2

)
. (41)

For our example we set Re = 10, and the spatial domain is defined as Ω = [0, 1] × [0, 1] . The initial

conditions are qu(x, y, 0) = qv(x, y, 0) = 0 and the boundary conditions are

qu(x, 0, t) = 1, qv(x, 0, t) = 0

qu(x, 1, t) = 1, qv(x, 1, t) = 0

∂qu

∂x
(0, y, t) = 0, qv(0, y, t) = 0

qu(1, y, t) =

⎧⎨
⎩

0, y ∈ [0, 0.42);
u(t), y ∈ [0.42, 0.58];
0, y ∈ (0.58, 1].

qv(1, y, t) = 0,

where u ∈ R is the control input. For this example, we shall define the control task as regulating the longitudinal
speed at a given point (xc, yc) ∈ Ω. In other words, if the system output y is defined as

y(t) = qu(xc, yc, t), (42)

and a reference signal r : t 
→ r(t) is given, then the goal is to achieve y → r .

7.2. Modeling of the flow process

As noted in Section 2, the first task is to collect snapshots from the unforced response of the system, using which
the baseline POD expansion is obtained. The number of modes is selected as n = 3, which is a good compromise
between the amount of energy captured and the complexity of the reduced-order model. The actuation mode ψ

is obtained using snapshots from operation under a chirp signal input. Next one uses GP to obtain a Galerkin
of the form (11) for system (39)–(40), where C , L , Lin , Q , Qin and Qain are as given in Appendix B. To

obtain the system output, note from (42) and (5) that

y(t) =q0u(xc, yc) +
n∑

i=1

ai(t)φi,u(xc, yc) + u(t)ψu(xc, yc)

y =q0u(xc, yc) + Louta + Lout,inu (43)

where Lout := [φ1,u(xc, yc) φ2,u(xc, yc) φ3,u(xc, yc)] ∈ R
1×3 and Lout,in := ψu(xc, yc) ∈ R . Next, the Galerkin

model is shifted coordinates, which results in a model of the form (13). This system has an equilibrium at ã = 0

, or equivalently a = ad . Writing the system output (43) in shifted coordinates, we get

y = q0u(xc, yc) + Loutã + Loutad + Lout,inu. (44)
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Since q0u(xc, yc) ∈ R and Loutad ∈ R are constants, one can redefine the system output as ỹ = y−q0u(xc, yc)−
Loutad so that

ỹ = Loutã + Lout,inu. (45)

Augmenting the shifted Galerkin system with this output yields the system to be controlled

ȧ =La + Q(a, a) + Linu + Qin(u, u) + Qain(a, u) (46)

y =Louta + Lout,inu, (47)

where the tildes have been dropped from both equations to simplify the notation.

7.3. Building an adaptation scheme to obtain the LPV model

For the adaptation process we consider the dynamics

˙̂a = L̂a + L̂inu − ke,

or equivalently

˙̂a = L̂â + L̂inu − (L̂ + kI)e, (48)

where e := â − a , L̂ ∈ R
3×3 , L̂in ∈ R

3×1 , and the elements of L̂ and L̂in constitute the parameter vector

θ̂L . Normally θ̂L would contain 3 × 3 + 3 × 1 = 12 elements to be estimated; however this would require that
the adaptation law be a 12th order system, which is quite high order. To reduce the number of parameters we
utilize the fact that for the problem under consideration, the eigenvalues of matrix L actually turn out to be
of the form

spec(L) = {λ1, λ2, λ3}, (49)

where λ1, λ2, λ3 ∈ R . By applying a non-singular transformation ā := Ta , one can transform system (13) into
modal form

˙̄a = L̄ā + Q̄(ā, ā) + L̄inu + Q̄in(u, u) + Q̄ain(ā, u) (50)

where

L̄ =

⎡
⎣ λ1 0 0

0 λ2 0
0 0 λ3

⎤
⎦ , L̄in =

⎡
⎣ b1

b2

b3

⎤
⎦ , (51)

and Q̄ , Q̄in , and Q̄ain are quadratic functions in their elements. 2 With the transformation into modal form
(50), the number of parameters to be estimated is reduced from 12 to 6, namely λ1 , λ2 , λ3 , b1 , b2 and b3 . As

2Note that fixing the eigenvalue spectrum as in (49) does not cause loss of generality. If the spectrum were different, one
would simply transform into the modal form based on this structure and obtain the L̄ matrix accordingly. For instance if we had
spec(L) = {σ + ω, σ − ω, λ} this would result in

L̄ =

�
�

σ −ω 0
ω σ 0
0 0 λ

�
�

and the parameters to be estimated would be σ , ω and λ .
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to the outputs of the system, we have that

y =Louta + Lout,inu

=LoutT
−1ā + Lout,inu

=L̄outā + Lout,inu

where L̄out := LoutT
−1 . From now on we shall drop the bars above the variables for the sake of simplicity and

write the system simply as

ȧ = La + Q(a, a) + Linu + Qin(u, u) + Qain(a, u) (52)

y = Louta + Lout,inu, (53)

where L and Lin are as in (51); it will be implicitly understood that the system has been transformed into the

modal form. We define the parameter vector as θ̂L := [λ̂1 λ̂2 λ̂3 b̂1 b̂2 b̂3]T , the individual elements of the state

vector as a := [a1 a2 a3]T , and ΦL(a, u) as

ΦL(a, u) :=

⎡
⎣ a1 0 0 u 0 0

0 a2 0 0 u 0
0 0 a3 0 0 u

⎤
⎦ .

With these definitions, the parameter adaptation mechanism (23) and the LPV model of the form (29)–

(30) can be set up. Recall that the main goal of the adaptation mechanism is to provide an estimate for the
range Θ in which the parameters of the LPV system vary. For this purpose, we apply numerous test signals
of various types to the Galerkin system including ramp functions, sine functions, chirp functions, square waves
and white noise, and record the values assumed by the parameters under these excitation signals. Observing

the range in which the parameter values vary with these excitations, the range Θ such that θ̂L ∈ Θ is chosen
to be the 6-dimensional box

Θ =
{
θ̂L ∈ R

6 : −285.28 < λ̂1 < −163.20,−10.53 < λ̂2 < −8.02,−67.11 < λ̂3 < −27.72,

− 27.87 < b̂1 < −3.65,−5.45 < b̂2 < −0.24,−6.08 < b̂3 < −1.83
}
. (54)

The constants used for the adaptation mechanism are k = 1000, kε = 10−3 , kd = 100 and b = 188.61.

7.4. Controller design and evaluation

Once the range Θ for the parameter vector is obtained as in (54), control design is performed on the approximate

LPV model (29)–(30) using standard H∞ design techniques by the help of MATLAB Robust Control Toolbox.
Pole placement constraints were also imposed on the design to achieve a settling time less than one seconds for

the closed-loop system.3 The resulting controller K is

ζ̇ =

⎡
⎣ 0 11.088 27.195

0 −19.74 33.546
0 0 −92.577

⎤
⎦ ζ +

⎡
⎣ 5.9963

7.3965
18.141

⎤
⎦ er (55)

u =
[
−8.4545 −10.429 −25.579

]
ζ − 5.6398 er , (56)

3MATLAB function h2hinfsyn was used to synthesize the controller.
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Figure 2. Step response of the closed-loop system from reference r to output y for ten random values of the parameter
vector.

which archives a finite L2 gain γ = 0.371 from col(ed, r) to er for all θ̂L ∈ Θ. The controller can also be
expressed in transfer function form as

K(s) =
−5.6398 (s + 174.9)(s + 33.42)(s + 8.989)

s(s + 19.74)(s + 92.58)
. (57)

From the Galerkin system coefficients, the constants k6 and k7 were evaluated to be 34.85 and 16.11,
respectively, and recalling that k = 1000 for the adaptation scheme, it can be verified that γ satisfies
condition (34) of Theorem 5.1.

The next step is the verification that this controller performs satisfactorily for the entire parameter range
Θ. Figure 2 shows the closed-loop step response of the system from the reference r to output y for ten random

values of the parameter vector θ̂L . It can be seen that the closed-loop system is successful in tracking the step

reference in all cases. It is possible to show that the LPV system has an unstable zero for all θ̂L ∈ Θ, and hence
the non-minimum phase behavior in the plot.

Figure 3 shows the closed-loop step response from the adaptation error ed to the output y for ten

random values of the parameter vector θ̂L . Recall that the adaptation error ed := col{e1, e2, e3} is regarded as
a disturbance for the LPV system. It can be seen that the adaptation error does not interfere with the operation

significantly since a step excitation from the ed channel only effects the output at magnitudes of order 10−2 ,
which is acceptable.

As the next step in evaluation, feedback using the controller (57) is applied to the nonlinear Galerkin

system. Figure 4 shows the error ed = â − a between the states a of the Galerkin system (52)–(53) and the

reconstructed states â of the LPV system (48) under a step input signal. It can be seen that the magnitude

of the error is quite small and less than 10−3 , which means that the LPV system approximates the nonlinear
Galerkin system very closely through the parameter adaptation scheme (23).
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KASNAKOĞLU: Modeling and control of flow problems by adaptation-based...,

� � �
	!

	��!

	�

	"�!

	"

	��!

	�

	��!

	�

	��!

�

��
����

��
���

� � �


��
����

� � �


��
���"

�������������

��
�������

�


��
���

 �

Figure 3. Step response of the closed-loop system from the adaptation error ed to output y for ten random values of
the parameter vector.
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Figure 4. Error ed between nonlinear Galerkin system states and reconstructed states in closed-loop under a step input.

833



Turk J Elec Eng & Comp Sci, Vol.18, No.5, 2010

� ��! � ��!
	��"��

	��"�$

	��"��

�
��
��������

� ��! � ��!
	%�!

	%

�

��
��������

� ��! � ��!
	!%

	!��!

	!�

"

��
��������
� ��! � ��!

	��

	�

	�

& �

��
��������

� ��! � ��!
	�

	�

�

& �

��
��������
� ��! � ��!

	�

	�

	�

&
"

��
��������

Figure 5. Parameter vector θ̂L produced by the adaptation mechanism during closed-loop operation under a step input.

Figure 5 shows the parameter values produced by this adaptation scheme, which are seen to lie well
within the range Θ in (54) for which the closed-loop system was evaluated earlier.

Figure 6 shows the output of the nonlinear Galerkin system in closed-loop under a step input, which is
seen to reach and settle to the desired reference value in less than one second.

The final step in the evaluation process is to connect the controller in feedback with the actual Navier-
Stokes equations (39)–(40) and perform computational fluid dynamics (CFD) simulations to evaluate the
performance of the closed-loop system. This step is crucial because the Galerkin system itself is an approximation
of the flow dynamics. The actual flow dynamics can only be described accurately by the Navier-Stokes PDEs,
on which direct analysis and design is not feasible due to their complexity. It is however possible and necessary
to verify the controllers on these equations through numerical CFD simulations. For this purpose Navier2D
solver under MATLAB [52] was utilized, with the reference signal r being a square wave alternating between 1
and −1. Snapshots from the CFD simulation for this case are shown in Figures 14–15, and the system output
y , the reference tracking error er , and the control input u are shown in Figure 16. It can be observed that
the closed-loop system successfully tracks the given reference signal. The example illustrates that, under the
guidance of Theorem 5.1, a controller design based on the approximate LPV model achieves the desired task
when applied to the nonlinear Galerkin model and to the Navier Stokes PDEs.

7.5. Additional analysis

The LPV model and its parameter range Θ provided by the adaptation mechanism can also be used to obtain
various robustness estimates of the closed-loop system, e.g. determining the sensitivity to input and output
disturbances entering the plant. Figure 10 shows the step response and Figure 11 shows the frequency response
of the closed-loop system to an input disturbance for ten random values of the parameter vector. The value of
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Figure 6. Nonlinear Galerkin system output in closed-loop under a step input.
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Figure 7. Snapshots (u -component) from the CFD simulation for the Navier-Stokes system under closed-loop.
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Figure 8. Snapshots (v -component) from the CFD simulation for the Navier-Stokes system under closed-loop.
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Figure 9. Point of interest (i.e. system output y ), tracking error er and control signal u for the Navier-Stokes system
under closed-loop.
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Figure 10. Response of the closed-loop system to a step input disturbance, for ten random values of the parameter
vector.

the parameter vector yielding the highest peak in the frequency response and its corresponding step response
are also shown with dashed lines in the figures. The figures indicate that the closed-loop system in general has
good input disturbance rejection properties, but attention is required if input noise of high amplitude around
13.21 rad/s is expected, since its attenuation may be slow and may interfere with the command signal given
from the controller.

As for sensitivity to output disturbance, Figure 12 shows the step response and Figure 13 shows the
frequency response of the closed-loop system to an output disturbance for ten random values of the parameter
vector. The value of the parameter vector yielding to the highest peak in the frequency response and its
corresponding step response are also shown with dashed lines in the figures. It can be seen from Figure 12 that
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Figure 11. Frequency response of the closed-loop system to input disturbance, for ten random values of the parameter
vector.
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Figure 12. Response of the closed-loop system to a step output disturbance, for ten random values of the parameter
vector.

the system in general is good at rejecting step disturbances. Looking at the frequency response in Figure 13,
one sees that the system is sensitive to noise at the output at frequencies around 16.68 rad/s, and the gain
to the output is around unity at higher frequencies. This is effect is somewhat expected, since the controller
cannot differentiate what portion of the signal it receives is due to tracking error and what portion is due to
output noise, and may erroneously try to follow a change due a noise signal. If this effect due to output noise
is intolerable for the application at hand, one may try to make the output measurements less prone to noise
(e.g. by insulation or by using better transducers), or perhaps filter the output for high frequencies if it can be
assured that the reference signal will be slowly varying.

An additional type of robustness analysis that can be performed using the LPV model is to compute
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Figure 13. Frequency response of the closed-loop system to output disturbance, for ten random values of the parameter
vector.
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the robust stability margins of the closed-loop system. This analysis consists of verifying that the nominal
system is stable and that no poles cross the stability boundary as the elements of the parameter vector

θ̂L = [λ̂1 λ̂2 λ̂3 b̂1 b̂2 b̂3]T are varied within their allowed range. By this analysis one can also gather information

about the sensitivities with respect to individual elements of θ̂L , i.e. which element affects stability the most.
Carrying out a robust stability analysis using MATLAB function robuststab yields the following result:

Uncertain System is robustly stable to modeled uncertainty.

-- It can tolerate up to 131% of the modeled uncertainty.

-- A destabilizing combination of 534% of the modeled uncertainty exists,

causing an instability at 39.6 rad/s.

-- Sensitivity with respect to uncertain element ...

’b1’ is 19%. Increasing ’bb1u’ by 25% leads to a 5% decrease in the margin.

’b2’ is 29%. Increasing ’bb2u’ by 25% leads to a 7% decrease in the margin.

’b3’ is 16%. Increasing ’bb3u’ by 25% leads to a 4% decrease in the margin.

’lambda1’ is 25%. Increasing ’lambda1u’ by 25% leads to a 6% decrease in the margin.

’lambda2’ is 11%. Increasing ’lambda2u’ by 25% leads to a 3% decrease in the margin.

’lambda3’ is 5%. Increasing ’lambda3u’ by 25% leads to a 1% decrease in the margin.

The analysis shows that the closed-loop system is robustly stable for all values of θ̂L ∈ Θ; in fact it is indicated
that the closed-loop will remain stable for up to 114% of the specified uncertainty (i.e. the robust stability

margin is 1.14). Among the individual elements of θ̂L , the robust stability margin is most sensitive to variations

in the element b̂2 and least sensitive to the variations in λ̂3 .

START HERE /NEXT To verify the predictions based on the LPV models regarding input and output
sensitivities, additional CFD simulations were performed in the presence of noises. For the first simulation an
input noise of 0.5 sin(13.21t) was applied to the system. Recall from Figure 11 that ω = 13.21 rad/s is the
frequency under which the frequency response peaks for the worst case. Snapshots for the CFD simulation for
this case are shown in Figures 14–15 and the system output y , the reference tracking error er , and the control
input u are shown in Figure 16. It can be observed that the results are consistent with predictions based on
the LPV model, and the closed-loop system is successful in tracking the input reference, while at the same time
significantly attenuating the effect of the input disturbance to the output.

For the second simulation, an output noise of 0.5 sin(16.68t) was applied to the system. The snapshots

for the CFD simulation for this case are shown in Figures 17–18 and the system output (42), i.e. the u -velocity
at the center of the domain, tracking error er and control signal u are shown in Figure 19. Unlike the input
noise case considered previously, the system is not very robust to the output disturbance and its effect occurs
as an oscillation of amplitude about 0.16 around the reference to be tracked. This is also consistent with the
earlier analysis based on the LPV model approximation, which had revealed that the closed-loop system is not
very good at attenuating output disturbances, except for those at low frequencies. Hence, as suggested earlier,
if significant noise is expected on the output measurements, and the reference command is known to be slowly
varying, one might consider filtering out the high frequencies before the signal is fed into the controller.
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Figure 14. Snapshots (u-component) of CFD simulation for the Navier-Stokes system under closed-loop with input
noise.
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Figure 15. Snapshots (v-component) of CFD simulation for the Navier-Stokes system under closed-loop with input
noise.
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Figure 16. Point of interest (i.e. system output y ), tracking error er and control signal u for the Navier-Stokes system
under closed-loop with input noise.
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Figure 17. Snapshots (u-component) of CFD simulation for the Navier-Stokes system under closed-loop with output
noise.
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Figure 18. Snapshots (v-component) of CFD simulation for the Navier-Stokes system under closed-loop with output
noise.
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Figure 19. Point of interest (i.e. system output y ), tracking error er and control signal u for the Navier-Stokes system
under closed-loop with output noise.
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8. Conclusions, discussions and future work

In this paper a systematic approach to the modeling and control of fluid flow problems is considered, which
is based on building an LPV model whose parameter vector is governed by an adaptation mechanism. After
POD/GP/IS techniques are applied to the fluid flow PDEs, the resulting nonlinear Galerkin model is approx-
imated by an LPV model, where the approximation is achieved by varying the parameters of the LPV model
through the adaptation scheme. Controller design can then be performed on the LPV model, instead of deal-
ing with the nonlinear Galerkin model. One such controller design possibility is also explored, where an H∞
controller design is carried out on the LPV model and is subsequently applied to the nonlinear Galerkin model.
It is shown that if certain conditions are satisfied, then the controller achieving the desired task on the LPV
model will also succeed on the nonlinear Galerkin model.

The ideas of the paper are illustrated on a flow control example governed by the Navier-Stokes PDEs.
It is seen from CFD simulations that the proposed modeling and control design approach achieves a desired
regulation within the flow domain. In addition, it is demonstrated that the LPV model can be used to predict
certain robustness properties of the closed-loop system.

The main contribution of this paper is to present a systematic and alternate methodology of dealing with
flow control problems. The method allows for carrying out analysis and design tasks on an LPV model instead
of a nonlinear model. This is advantageous since there are standard methods available for dealing with LPV
systems, whereas nonlinear analysis and control design is much more difficult and case dependent.

We should point out that, as opposed to the mathematical approach presented in the paper, there
exist physical methods in literature for approaching similar flow control problems. For instance, one can find
techniques based on the decomposition of flow in low-frequency (base flow), dominant frequency (coherent

structures), and high-frequency (small scale fluctuations) compartments [53, 54]. According to this strategy,
the parameter to be adjusted are related to the amplitudes of the base-flow modes. It should also be mentioned
that the LPV models may not be adequate in describing certain strong nonlinearities, whose exploitation might
be advantageous in some cases for efficient turbulence control [55, 56].

Future research directions include employing alternative controller design methods to the LPV model
and applying the results to additional flow control applications.
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9. Appendices

A. Proof of Theorem 5.1

The proof relies on the concepts of dissipative systems and input-to-state stability (ISS) [57]. The closed

loop system formed with the controller K (32)–(33) and system (29)–(30) is a linear system satisfying

‖col(ed, r)‖2 =< γ‖r‖2 for all θ̂L ∈ Θ. Hence there exists a storage function Va = xT
a Xclxa such that the

closed-loop system is strictly dissipative with respect to the supply rate

q(ed, r, er) = γ2‖col(ed, r)‖2 − ‖er‖2. (58)

In other words,

V̇a(xa) ≤ −μa‖xa‖2 + q(ed, r, er) = −μa‖xa‖2 + γ2‖col(ed, r)‖2 − ‖er‖2

≤ −μa‖xa‖2 + γ2‖ed‖2 + γ2‖r‖2 − ‖er‖2 (59)

is satisfied for some μa ∈ R+ , where xa := col(â, ζ) is the augmented state vector containing the states of the
LPV plant and the controller. Note that

αa(‖xa‖) ≤ Va(xa) ≤ αa(‖xa‖), (60)

where αa(r) := λminr2 , αa(r) := λmaxr
2 and λmin , λmax are the smallest and largest eigenvalues of Xcl ,

respectively.

Let us also define

Vt(ed, θ̂L) :=
1
2
‖col(ed, θ̂L)‖2 =

1
2
eT
d ed +

1
2
θ̂T
L θ̂L. (61)

Consider now the entire system including the LPV plant, controller, adaptation law and the nonlinear

Galerkin model. Consider the state vector xe := col(â, ζ, ed, θ̂L) for the entire system. Note that the state of
the Galerkin system is included implicitly since a = â − ed . Consider a candidate Lyapunov function

V (xe) := Va(â, ζ) + Vt(ed, θ̂L) (62)

and note that
αe(‖xe‖) ≤ V (xe) ≤ αe(‖xe‖), (63)

where αe(r) = k4r
2 , αe(r) = k5r

2 and

k4 :=min{λmin,
1
2
} (64)

k5 :=max{λmax,
1
2
}. (65)

Differentiating (62) along trajectories yields

V̇ (xe) = V̇a(â, ζ) + V̇t(ed, θ̂L) (66)
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where we know that V̇a satisfies (59). To obtain a bound for V̇t , note from (61) that

V̇t = eT
d ėd + θ̂T

L
˙̂
θL

= eT
d ( ˙̂a − ȧ) + θ̂T

L
˙̂
θL

= eT
d

(
ΦL(a, u)θ̂L − ked − ΦL(a, u)θL − ΦN(a, u)θN

)

+ θ̂T
L

(
−ΦT

L(a, u)ed − Υ(θ̂L, a, u)− Ψ(θ̂L)
)

= eT
d ΦL(a, u)θ̂L − eT

d ked − eT
d (ΦL(a, u)θL + ΦN (a, u)θN) − θ̂T

LΦT
L(a, u)ed

− θ̂T
L θ̂∗L‖col(a, u)‖4 − θ̂T

L θ̂∗L‖col(a, u)‖2 − θ̂T
LΨ(θ̂L)

= − k‖ed‖2 − eT
d (La + Linu + Q(a, a) + Qain(a, u) + Qin(u, u))

− θ̂T
L

θ̂L

‖θ̂L‖2
‖col(a, u)‖4 − θ̂T

L

θ̂L

‖θ̂L‖2
‖col(a, u)‖2 − θ̂T

LΨ(θ̂L)

≤ − k‖ed‖2 + ‖ed‖ ‖La + Linu + Q(a, a) + Qain(a, u) + Qin(u, u)‖ − ‖col(a, u)‖4

− ‖col(a, u)‖2 − θ̂T
LΨ(θ̂L)

≤ − k‖ed‖2 + ‖ed‖
(
‖L‖‖a‖+ ‖Lin‖‖u‖+ ‖Q‖‖a‖2 + ‖Qain‖‖a‖‖u‖+ ‖Qin‖‖u‖2

)
− ‖col(a, u)‖4 − ‖col(a, u)‖2 − θ̂T

LΨ(θ̂L)

≤ − k‖ed‖2 + k6‖ed‖ ‖col(a, u)‖+ k7‖ed‖ ‖col(a, u)‖2 − ‖col(a, u)‖4 − ‖col(a, u)‖2

− θ̂T
LΨ(θ̂L)

≤ − k‖ed‖2 +
k2
6

2
‖ed‖2 +

1
2
‖col(a, u)‖2 +

k2
7

2
‖ed‖2 +

1
2
‖col(a, u)‖4 − ‖col(a, u)‖4

− ‖col(a, u)‖2 − θ̂T
LΨ(θ̂L),

where

k6 :=max{‖L‖, ‖Lin‖} (67)

k7 :=max{‖Q‖+
1
2
‖Qain‖, ‖Qin‖ +

1
2
‖Qain‖}, (68)

and we have used Young’s inequality4 as needed. Collecting similar terms,

V̇t ≤−
(

k − k2
6

2
− k2

7

2

)
‖ed‖2 − 1

2
‖col(a, u)‖2 − 1

2
‖col(a, u)‖4 − θ̂T

LΨ(θ̂L). (69)

4Let x, y, ε ∈�+ , then xy ≤ x2

2ε
+ εy2

2
.
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Substituting (59) and (69) into (66) yields

V̇ (xe) =V̇a(â, ζ) + V̇t(ed, θ̂L)

≤− μa‖xa‖2 + γ2‖ed‖2 + γ2‖r‖2 − ‖er‖2 −
(

k − k2
6

2
− k2

7

2

)
‖ed‖2 − 1

2
‖col(a, u)‖2

− 1
2
‖col(a, u)‖4 − θ̂T

LΨ(θ̂L)

≤− μa‖xa‖2 + γ2‖r‖2 − ‖er‖2 −
(

k − k2
6

2
− k2

7

2
− γ2

)
‖ed‖2 − 1

2
‖col(a, u)‖2

− 1
2
‖col(a, u)‖4 − θ̂T

LΨ(θ̂L)

≤γ2‖r‖2 − μa‖xa‖2 − ‖er‖2 −
(

k − k2
6

2
− k2

7

2
− γ2

)
‖ed‖2 − kε‖θ̂L‖2, (70)

where the last line follows from the fact that −Ψ(θ̂L) ≤ −kε‖θ̂L‖ . Defining

k8 := min{μa, k − k2
6

2
− k2

7

2
− γ2, kε}, (71)

and using the fact that −‖er‖2 ≤ 0 yields

V̇ (xe) ≤γ2‖r‖2 − k8‖xe‖2. (72)

Defining two class K∞ functions α and σ as

α(s) := k8s
2 (73)

σ(s) := γ2s2, (74)

and substituting into (72), yields

V̇ (xe) ≤ −α(‖xe‖) + σ(‖r‖), (75)

which shows that the entire system is input-to-state stable (ISS) from input r to state xe = col(â, ζ, ed, θ̂L).
This implies that there exists a class KL function β and a class K function Γ such that

‖xe(t)‖ ≤ β(‖xe(0)‖, t) + Γ(‖r‖∞). (76)

The function Γ can be computed explicitly as 5

Γ(s) = α−1
e ◦ αe ◦ α−1k9σ(s) =

k5

k4

k9

k8
γs, (77)

where k9 is any number greater than one. Hence for a bounded reference signal r , all state trajectories are
bounded for all time. Also note from (70) that

V̇ (xe) ≤γ2‖r‖2 − ‖er‖2 (78)

5See for instance [57], Remark 10.4.3.
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which states that the system has finite L2 gain γ from r to er , i.e.

‖er‖2 ≤ γ‖r‖2. (79)

Similarly from (70) one can also write

V̇ (xe) ≤γ2‖r‖2 −
(

k − k2
6

2
− k2

7

2
− γ2

)
‖ed‖2, (80)

which means that the system has finite gain finite L2 gain from r to er . In fact, it holds that

‖ed‖2 ≤
(

γ2

k − k2
6
2 − k2

7
2 − γ2

) 1
2

‖r‖2, (81)

which is the statement of the theorem. �

B. Coefficients of the galerkin system for the example problem

The coefficients of the Galerkin system (11) for example studied in Section 7, namely the control of 2D
incompressible Navier-Stokes flow on a square domain ,are as follows:

Ci =
〈[

Ci,u

Ci,v

]
, φi

〉
, Lij =

〈[
Lij,u

Lij,v

]
, φi

〉
, Lin,i =

〈[
Lin,i,u

Lin,i,u

]
, φi

〉
,

Qijk =
〈[

Qijk,u

Qijk,v

]
, φi

〉
, Qin,i =

〈[
Qin,i,u

Qin,i,v

]
, φi

〉
, Qain,ij =

〈[
Qin,ij,u

Qin,ij,v

]
, φi

〉

where

Ci,u = − q0u
∂

∂x
q0u + Re−1

(
∂2

∂x2
q0u +

∂2

∂y2
q0u

)
− q0v

∂

∂y
q0u

Ci,v = − q0u
∂

∂x
q0v + Re−1

(
∂2

∂x2
q0v +

∂2

∂y2
q0v

)
− q0v

∂

∂y
q0v

Lij,u = − (φu,j)
∂

∂x
q0u + Re−1

(
∂2

∂x2
(φu,j) +

∂2

∂y2
(φu,j)

)
− (φv,j)

∂

∂y
q0u

Lij,v = − (φu,j)
∂

∂x
q0v + Re−1

(
∂2

∂x2
(φv,j) +

∂2

∂y2
(φv,j)

)
− (φv,j)

∂

∂y
q0v

Lin,i,u = − q0u
∂

∂x
ψu − ψv

∂

∂y
q0u + Re−1

(
∂2

∂x2
ψu +

∂2

∂y2
ψu

)
− ψu

∂

∂x
q0u − q0v

∂

∂y
ψu

Lin,i,v = − q0u
∂

∂x
ψv − ψv

∂

∂y
q0v + Re−1

(
∂2

∂x2
ψv +

∂2

∂y2
ψv

)
− ψu

∂

∂x
q0v − q0v

∂

∂y
ψv

Qijk,u = − (φu,k)
∂

∂x
(φu,j) − (φv,k)

∂

∂y
(φu,j)

Qijk,v = − (φu,k)
∂

∂x
(φv,j) − (φv,k)

∂

∂y
(φv,j)
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Qin,i,u = − ψv
∂

∂y
ψu − ψu

∂

∂x
ψu

Qin,i,v = − ψv
∂

∂y
ψv − ψu

∂

∂x
ψv

Qin,ij,u = − (φv,j)
∂

∂y
ψu − (φu,j)

∂

∂x
ψu − ψu

∂

∂x
(φu,j) − ψv

∂

∂y
(φu,j)

Qin,ij,v = − (φv,j)
∂

∂y
ψv − (φu,j)

∂

∂x
ψv − ψu

∂

∂x
(φv,j) − ψv

∂

∂y
(φv,j) .

The reader interested in the details regarding the derivation of the Galerkin model and its coefficients above is
referred to [34].
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