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Control of Nonlinear Systems Represented by Galerkin Models Using 

Adaptation-based Linear Parameter-varying Models 
 

Coşku Kasnakoğlu 

 

Abstract: This paper studies the control of nonlinear Galerkin systems, which are an important class 

of nonlinear systems that arise in reduced-order modeling of infinite-dimensional systems. A novel ap-

proach is proposed in which a linear parameter-varying (LPV) model representing the Galerkin model 

is built, where the parameter variation is dictated by a specially designed adaptation scheme. The con-

troller design is then carried out on the simpler LPV model, instead of dealing directly with the com-

plicated nonlinear Galerkin system. An automatically scheduled H-infinity controller is designed using 

the LPV model, and it is proven that this controller will indeed achieve the desired stabilization when 

applied to the nonlinear Galerkin model. The approach is illustrated with an example on cavity flow 

control, where the design is seen to produce satisfactory results in suppressing unwanted oscillations. 

 

Keywords: Adaptation, cavity flow, flow control, Galerkin systems, H-infinity control, linear 

parameter varying (LPV) systems, self scheduling. 

 

1. INTRODUCTION 

 

Systems in many areas and applications are described 

by dynamics which are quadratic with respect to the state 

and the input, and bilinear with respect to cross terms in 

the state and input. A system model of this type is the 

Galerkin model, which is an important class of nonlinear 

models that arise in reduced-order modeling of infinite-

dimensional systems. One can find myriad studies and 

research work on Galerkin models in literature; to list a 

few, [1] presented an approach to simulate wave-

structure interaction dynamics and constructed a low-

dimensional Galerkin model incorporating up to 12 

modes and time-dependent boundary conditions. [2] 

analyzed the chaotic behavior of a Galerkin model of the 

Kolmogorov fluid motion equations. [3] presented a 

finite element model for precipitate nucleation and 

growth during the quench phase of aluminium alloy 

manufacturing processes, developing a discontinuous 

Galerkin model for steady advection-diffusion problems 

to predict the thermal response in a continuous quench 

process. [4] analyzed a slightly modified Galerkin model 

which uses the conservative momentum equations, for 

surface water flow. [5] investigated nonlinear three-

dimensional convectionunder gravity modulation using a 

minimum Galerkin model which describes the 

competition between several regular convection patterns. 

[6] presented a bifurcation scenario using a Galerkin 

model to analyze the nonlinear interactions between rolls 

and waves and find that they maintain the system in the 

vicinity of the oscillatory instability onset, thus 

preventing the blow-up of the growing nonlinear roll 

solution. [7] studied the conditions for 
∞

H  convergence 

of the transfer functions of finite-dimensional Galerkin 

approximations for linear distributed-parameter flexible 

mechanical systems. [8] used selective decay and 

dynamic alignment relaxation theories to interpret the 

time asymptotic behavior of a Galerkin model of three-

dimensional (3-D) magnetohydrodynamics. [9] investi-

gated currents of heat, concentration, and mass in binary 

fluid layers heated from below using nonlinear analytical 

solutions of a simple Galerkin model for impermeable 

horizontal boundary conditions. [10] presented a few-

mode Galerkin model for convection in binary fluid 

layers subject to impermeable horizontal boundary 

conditions at positive separation ratios. [11] studied 

physicalphenomena fundamental to rotating baroclini-

cally driven flows, with reference to results of numerical 

simulation of rotating annulus flows, using a modified 

Galerkin model.  

One of the fields in which Galerkin models are widely 

used is aerodynamic flow control, which has been an 

initial motivation for the study in this paper. In flow 

control problems, one usually obtains an orthonormal set 

of basis functions for flow variables, e.g., using proper 

orthogonal decomposition (POD), and then projects the 

governing equations onto a finite number of modes using 

Galerkin projection (GP). This produces a Galerkin 

model that approximates the original system of nonlinear 

partial differential equations (PDEs). An approach of this 

sort has been used, among others, in feedback control of 

cylinder wakes [12-17], control of cavity flow [18-24], 

and optimal control of vortex shedding [25,26].  

While Galerkin models provide a reduced order 

approximation for many infinite dimensional processes 
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represented by PDEs, their nonlinear nature demands the 

use of specialized and complicated nonlinear control 

theoretic methods for analysis and control design. One 

possibility towards further simplification is to use 

linearization; however, this will limit the analysis and 

control design to a single operating condition, which is 

unacceptable for many problems. In this paper we 

propose a novel and less restrictive approach for the 

analysis and control of nonlinear Galerkin models, using 

techniques based on adaptation [27-31]. We demonstrate 

that, instead of dealing directly with the nonlinear 

Galerkin model, one can build a Linear Parameter 

Varying (LPV) model representing the Galerkin model. 

LPV models are those which have a linear structure, but 

some of the system parameters vary with time. For our 

approach, the parameter variation of the LPV model is 

controlled by a specially designed adaptation scheme. 

From control theoretic perspective, handling an LPV 

system is preferable to dealing with the nonlinear 

Galerkin model, since numerous techniques have been 

devised for the control of LPV systems, including self-

scheduled 
∞

H  control approaches [32-34]. It will be 

shown that with the adaptation mechanism designed 

using the steps outlined, one can carry out the controller 

design on the LPV model, and then apply this same 

controller to the nonlinear Galerkin system with 

successful results. The ideas described in the paper are 

exemplified by a flow control case study, namely, the 

suppression of unwanted oscillations caused by air flow 

over a cavity.  

 

2. PROBLEM DESCRIPTION 

 

In this section we provide the problem description and 

the main goals of the paper. 

Definition 1 (Galerkin model): Consider a dynamical 

system model of the following form 

in

1 1 1 1

ain in

1 1 1 1

n n n n

i ik k ik k ijk k j

k k j k

m n m m

ijk k j ijk k j

j k j k

L a L u Q a aa

Q a u Q u u

,

= = = =

, ,

= = = =

= + +

+ +

∑ ∑ ∑∑

∑∑ ∑∑

�

 (1) 

for 1i n= , ,…  where 

1
{ }n n

i i
a a

=
= ∈�  is the state vector, 

1
{ }m m

i i
u u

=
= ∈�  is the control input, and .n m, ∈�  

We refer to system models of the form (1) as Galerkin 

models, which constitute the main interest of the work 

presented in the paper. System (1) can also be expressed 

in compact form as 

( ) ( ) ( ),
in ain in

a La L u Q a a Q a u Q u u= + + , + , + ,�  (2) 

where 

1
{ } ,n n n

ij i jL L
×

, =
= ∈�  

in in 1
{ } ,n m n m

ij i jL L
, ×

, , =
= ∈�  

1
( ) { } ,T n n

i i
Q a a a Q a

=
, = ∈�  

1
{ } ,n n n

i ijk j kQ Q
×

, =
= ∈�  

1
( ) { } ,T n n

ain ain i i
Q a u a Q u

, =
, = ∈�  

1
{ } ,n m n m

ain i ain ijk j kQ Q
, ×

, , , =
= ∈�  

in 1
( ) { } ,T n n

in i i
Q u u u Q u

, =
, = ∈�  

1
{ } .n m m

in i in ijk j kQ Q
×

, , , =
= ∈�  

With the definition of a Galerkin model given above, 

the first goal is to obtain a linear parameter varying (LPV) 

system 

( )ˆ ˆ ˆˆ ˆ ˆ( ) (( )) ( ) (( )) ( ) (( )) ( ) ( ) ,
in err

a t L t a t L t u t L t a t a t= + + −
�  

 (3) 

which closely represents the system in (2); here denotes 

the time-varying parameter vector. In other words, if 

ˆ ,e a a:= −  then e  should remain bounded and small as 

.t →∞  The second goal is to design a controller for this 

system that achieves stabilization of the system, as well 

as keeping the effect of the disturbance caused by the 

error e  within reasonable limits. Section 3 will be 

concerned with the first goal, whereas Section 4 will deal 

with the second. 

 

3. DESIGN OF A LINEAR PARAMETER 

VARYING MODEL APPROXIMATING THE 

GALERKIN SYSTEM THROUGH ADAPTATION 

 

The task considered in this section is the design of an 

LPV model of the form (3) which will approximate the 

Galerkin system (2). Note that while the system in (1) is 

nonlinear in its state a  and its input ,u  it is linear in 

its parameter values contained in ,L ,Q
in
,L

in
Q  and 

ain
Q  since there are no terms involving multiplication of 

two parameter values. To write the dynamics in a from 

where this linear dependance in apparent, let us first 

build the parameter vector p
θ ∈�  as 

( )in in ain
col ( ) ( ) ( ) ( ) ( ) ,L L Q Q Qθ := : , : , : , : , :  (4) 

where p∈�  is the total number of parameters, col 

stands for column vector, i.e., 
1 2

col( )
n

x x x, , , =…  

1 2
[ ] ,

T T T T

n
x x x…  and ( )L :  denotes the column vector 

formed by stacking all elements of L  on top of each 

other, i.e., 

11 21 1
( ) col( ).

n n nn
L L L L L

− ,
: := , , , ,…  (5) 

The definitions for 
in
( ),L : ( ),Q :

in
( )Q :  and 

ain
( )Q :  

follow similarly. One can then define n m

Φ : ×� �  
n p

→ ×� �  such that 

( ) ,a a u θ= Φ ,�  (6) 

where ( )a uΦ ,  is a n p×  matrix with elements 

{ ( ) 1 1 }.ija u i n j pΦ , | = , , , = , ,… …  Here, ( )ija uΦ ,  is 

the element at row i  and column ,j  and corresponds 

to the contribution of the j th parameter in θ  to the i

th state of .a  For instance, from (4) one sees that the 

second parameter in θ  is the second parameter of ,L  
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which from (5) is seen to be L21. It can also be seen that 

the second element in the state vector 
1

col{a a= ,  

2 3
}

n
a a a, , ,…  is 

2
.a  Looking at (1), if we highlight the 

portion of the dynamics of a2 where the term L21 appears 

2 21 1
... ... ,L aa = + +�  

which implies that 
22 1

( ) .a u aΦ , =  Other elements of 

( )a uΦ ,  can be constructed similarly so as to write the 

system in the desired linear parameter form shown in (6). 

Once the system model in linear parameter form as in 

(6) is obtained, the next step is the design of the 

adaptation law. Note first that the Galerkin system in (6) 

can be written as 

in ain in

( ) ,

( ) ( ) ,

( ) ( ) ( ),

L L N N

a a u

a a u a u

a La L u Q a a Q a u Q u u

θ

θ θ

= Φ ,

= Φ , +Φ ,

= + + , + , + ,

�

�

�

 (7) 

where we have split the linear and nonlinear parts of the 

Galerkin system as 

in

ain in

( ) ,

( ) ( ) ( ) ( )

L L

N N

a u La L u

a u Q a a Q a u Q u u

θ

θ

Φ , := +

Φ , := , + , + , .
 (8) 

The goal is to obtain a linear model of the form 

ˆ ˆ ˆˆ ( ) ,
L L in

a a u ke La L u keθ= Φ , − = + −
�  (9) 

whose parameter vector ˆ
L

θ  will be modified by an 

adaptation mechanism to match the Galerkin system (7). 

It should be emphasized that it is not the goal to achieve 

ˆ ;
L L

θ θ→  this is in fact undesirable, since it would 

imply that (9) approximates the behavior of (7) around 

only the origin 0.a =  We would instead like ˆ
L

θ  to be 

modified to force the state trajectory of (9) to that of (7). 

In other words, the goal is to make the error ˆe a a= −  

small, which is governed by the following dynamics1 

ˆˆ ( ) ( ) ( )
L L L L N N

e a a a u ke a u a uθ θ θ= − = Φ , − −Φ , −Φ , .
�� �

 (10) 

The adaptation mechanism considered for this purpose is 

of the following form 

ˆ ( ) ( ) ( ),
T

L L L L
a u e a u e a uθ θ θ= −Φ , − ϒ , , −Ψ , , ,

� � �  (11) 

where 

ˆ ,
L L c

θ θ θ:= −
�  (12) 

* 4 * 2( ) ( ) ,
L r L s L
a u k a u k eθ θ θϒ , , := , +� � �� � � �  (13) 

*

2

0 0

0

L

L

L L L

θ
θ

θ θ θ

 , = ;
:= 

/ , ≠ ,

�
�

� � �� �
 (14) 

                                                           
1The system (9) can also be though of an adaptive pseudo-

observer; the prefix pseudo is due to the fact that that a real 

observer reconstructs the states from outputs, which is not the 

case here. 

0 col( ) col( )
( )

col( ) col( )

L x

L

d L L x

e k a u
e a u

k e k a u

θ
θ

θ θ

 , , < , ;
Ψ , , , := 

, , ≥ ,

�� � � ��
� �� � � �

  

 (15) 

and ,
r s d x

k k k k k
+

, , , , ∈�  p

c
θ ∈�  are constants to be 

selected as part of the design process. It can be shown 

that, by using this adaptation mechanism with properly 

selected values of these constants, the error ˆe a a= −  

can be made to remain bounded and approach zero. This 

means that the state trajectories of the system (9) will 

asymptotically approach those of the Galerkin system (2). 

We postpone the proof of this statement until Theorem 1 

in the Section 6; however we note that if this is the case, 

then the following interpretation can be made: Let us 

rearrange (9) as 

in

in

in err

ˆ ˆˆ ,

ˆ ˆˆ ˆ( ) ,

ˆ ˆ ˆˆ ˆ ,

a La L u ke

a L a e L u ke

a La L u L e

= + −

= − + −

= + +

�

�

�

 (16) 

where 
err

ˆ ˆ( ).L L kI= − +  One can then observe that (16) 

is of the same form as (3). Thus, if the signal e is 

bounded and small, one can regard system (9) as a linear 

parameter-varying system that approximates the original 

system, with the signal e entering as an external 

disturbance. With this interpretation, one can carry out 

the control design on (16) as explained in the next 

section. 

Remark 1: At this point it will be useful to emphasize 

that the parameter vector θ  in (4), i.e., the parameters 

of the nonlinear Galerkin system contained in L, Lin, Q, 

ain
Q  and 

in
Q  are fixed and not time varying. What is 

time varying are the parameters of the LPV model 

denoted by ˆ .
L

θ  These are the parameters that are 

modified by adaptation scheme (11) for the purpose of 

matching the trajectories of the LPV model (16) with 

those of the Galerkin system (7). 

 

4. CONTROL DESIGN 

 

Having obtained an LPV model (16) to approximate 

the flow process through adaptation, our goal in this 

section is to design a controller for this model to stabilize 

the system and also limit the effect of the error term on 

the dynamics. We would also like to treat adaptation 

mechanism an exogenous system as far as the controller 

is concerned and therefore not utilize any knowledge 

about the governing differential equations of the 

adaptation law. The controller is only allowed to use the 

states of the adaptation mechanism, which is the 

reconstructed state ˆ,a  and the parameter vector ˆ
L

θ  

and must be able to achieve the desired stabilization for 

any parameter trajectory ˆ ( )
L
tθ  while limiting the effect 

of the error e on the output. In this section we will design 

a controller that can achieve these goals based on a 

robust automatic scheduling method [32-34]. We provide 

only a brief summary of this method below, and the 
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reader interested in details of thefull theory is referred to 

[32-34]. 

Consider the following affine linear parameter 

dependent plant 

1 2

1 11 12

2 21

( ) ( ) ,

( ) ( ) ,

,

x A x B w B u

z C x D w D u

y C x D w

θ θ

θ θ

= + +

= + +

= +

�

 (17) 

where x is the state, u is the control input, w is the 

disturbance input, y is the signal available for control, 

and z is the output to be controlled. The parameter vector 

θ  is available in in real-time and varies in a polytope 

heta  of vertices 
1
... ;

p
θ θ, ,  i.e., θ ∈Θ  where Θ :  

{ }1 1 1
Co{ } 0 1

p p

p i i i ii i
θ θ α θ α α

= =

= , , := : ≥ , =∑ ∑…  and 

Co stands for convex hull. We assume that 
2

( ( ) )A Bθ ,  

is quadratically stabilizable over θ  and 
2

( ( ) )A Cθ ,  is 

quadratically detectable over .θ  The main goal is to 

design a dynamic controller whose input is y and 

generates u which stabilizes the system (17) while 

minimizing the gain from w to z. For this purpose a 

linear parameter dependent controller having the 

following structure is considered 

( ) ( ) ,

( ) ( )

K K

K K

A B y

u C D y

ζ θ ζ θ

θ ζ θ

= +

= +

�

 (18) 

using which the feedback structure shown in Fig. 1 is 

built. The closed loop system can be expressed as 

( ) ( ) ,

( ) ( ) ,

cl cl

cl cl

x A x B w

z C x D w

θ θ

θ θ

= +

= +

�

 (19) 

where 

0

0 21

0 12

11 12 21

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

cl

cl

cl

cl

A A

B B

C C

D D

θ θ θ

θ θ

θ θ θ

θ θ

= + Ω ,

= + ,

= + Ω ,

= + Ω ,

B C

B D

D C

D D

 (20) 

and 

( ) ( )
( )

( ) ( )

K K

K K

A B

C D

θ θ
θ

θ θ

 
Ω = , 

 
 

0

( ) 0

0 0

A
A

θ 
= , 
 

 

1

0

( )

0

B
B

θ 
= , 
 

 ( )0 1
( ) 0C C θ= , ,  

2
0

0

B

I

 
= , 
 

B  

2

0

0

I

C

 
= , 
 

C  ( )12 12
0 D= , ,D  

21

21

0

D

 
 
 
  

= .D  

The task is to design the controller matrices ( ),
K

A θ  

( ),
K

B θ  ( )
K

C θ  and ( )
K

D θ  so as to stabilize the 

closed loop system (19) while at the same time achieving 

2 2
z wγ<� � � �  for some γ

+
∈�  for all permissable 

parameter trajectories ( ).tθ  The last item is important 

since the parameters will be generated by a separate 

adaptation system as in (9)-(11), which is treated as an 

exogenous system for control design purposes. The 

controller must therefore be able to account for all 

possible parameter trajectories within certain bounds, 

and achieve the stabilization and disturbance attenuation 

goal for all possible cases. The reader interested in the 

detailed procedure for obtaining the controller matrices is 

referred to [32]. For the problem at hand, the LPV 

system which we would like to control is given in (16), 

where the input to the controller is taken to be 

ˆ ,y a a e= = −  and the system output is taken to be the 

ˆcol( ) col( ).z a u a e u= , = − ,  The system is also 

augmented with a known input filter so as to eliminate 

the parameter dependency from the input coefficients. 

This results in the following augmented system 

in
ˆ ˆˆ ˆ ˆˆˆ 0ˆ ( ) ( ) ( )

,
0 0

L L u L

uu

aL L Ca L kI
e v

BA

θ θ θ

ξξ

        +
= − +       
         

�

�
  

 (21) 

ˆ0
,

0 0
u

I a I
z e

C ξ

     
= −     

    
 (22) 

[ ]
ˆ

0 ,
a

y I e
ξ

 
= − 

 
 (23) 

where ξ  is the state vector of the input filter and ,
u

A  

B
u
, C

u
 are its system matrices. Fig. 2 shows a block 

diagram of the entire system including the nonlinear 

Galerkin system, the input filter, the adaptation 

mechanism, andthe controller.  

So far we have discussed the main motivation, 

background information and general path for the method 

considered in the paper. We are now ready to present the 

explicit steps of the procedure, and formally analyze its 

validity. 

 

Fig. 1. Feedback structure for linear parameter varying 

control design. 

 

 

Fig. 2. Block diagram of the entire system. 



Coşku Kasnakoğlu 

 

 

752 

5. STEPS FOR THE PROPOSED APPROACH 

 

Step 1: The first step is to set up the LPV model (9) 

and adaptation mechanism in (11) with the constant k  

selected to satisfy 

2

6
1,k k> +  (24) 

where 

{ }6 in
maxk L L:= , .� � � �  (25) 

Initially the dissipative terms in (11) are set to zero and 

the parameter dynamics are allowed to vary freely, i.e., 

we initially set 0ϒ =  and 0.Ψ =  

Step 2: The second step is to determine the parameter 

range Θ  to be used for the LPV model. For this 

purpose we use typical system identification ideas and 

excite the system with input signals that are of various 

amplitudes and frequencies of interest. With these 

excitations, multiple experiments are conducted where 

the LPV model (9), the adaptation mechanism (11) and 

the Galerkin system (7) are run in open-loop, and the 

resulting parameter trajectories ˆ ( )
L
tθ  are recorded. The 

range Θ  is determined by observing the range in which 

these parameter trajectories vary. For future reference we 

express the range Θ  as 

{ ( ) 1 },p
ii

i i pθ θ θθΘ = ∈ : < < , = , ,� …  (26) 

where ( )iθ ∈�  denotes the i th component of ,θ  

and ,
i

θ  
i

θ  are the minimum and maximum values for 

the i th component of .θ  We also define 
i i i

θ θ θ∆ := −  

and 

min
i

i
θ

δ θ:= ∆ .  (27) 

Step 3: The third step is to construct the LPV 

controller, which is itself an LPV system. The controller 

is of the form (18), and is obtained using a robust self-

scheduled control design method [32] as described in 

Section 4. The bound γ  should be selected as the 

smallest possible value for which a feasible solution 

cl
X  to the matrix inequalities can be obtained. For 

future reference we define 
min

λ  and 
max

λ  as the 

minimum and maximum eigenvalues of .

cl
X  

Step 4: The next step the is to incorporate the 

dissipative terms ϒ  and Ψ  into the adaptation 

dynamics. The constants in (12)-(15) are selected to 

satisfy 

1 21 2

1
( ),

2
c p p

θ θ θ θθ θ θ:= + , + , , +…  (28) 

2

7
,

r
k k>  (29) 

1 1 1

10 4 5 IC

1
,

2
x
k k k k k

θ
δ

− − −

<  (30) 

1
,

d x
k k

−

>  (31) 

2 1 2 2

65 65
max{ },

s x
k k k k γ

−

> + , +  (32) 

where 

4 min

1
min{ },

2
k λ:= ,  (33) 

5 max

1
max{ },

2
k λ:= ,  (34) 

65 in
max{ },

c c
k L L

,

:= ,� � � �  (35) 

ain ain

7 in
max ,

2 2

Q Q
k Q Q

 
:= + , + 

 

� � � �
� � � �  (36) 

10
max{1 }

u
k C:= , .� �  (37) 

In the above, 
c

L  and 
c in

L
,

 are the matrices whose 

coefficients form ,
c

θ  i.e., 

( )c c in
( ) ( )

c
L Lθ

,

= : , :  (38) 

and 
IC
k  is an upper bound on the initial conditions for 

the entire system, i.e., 

IC
(0) ,

e
x k≤� �  (39) 

where 
e
x  includes the states of the Galerkin system, 

input filter, LPV system, adaptation scheme and the LPV 

controller. The initial conditions for the LPV model and 

adaptation scheme are set to 

(0) (0)a=  (40) 

(0)
c

θ=  (41) 

and the rest of the initial conditions can be specified 

arbitrarily. The addition of the dissipative terms will 

assure that the parameter trajectory ˆ ( )
L
tθ  will remain 

within Θ  during the closed-loop operation (this 

statement will be proved in Theorem 1.). This is 

necessary for the correct operation of the LPV controller. 

Step 5: The final step is to form the entire system 

shown in Fig. 2. The dashed lines encapsulate the the 

elements built in Steps 1-4, namely the input filter, the 

LPV model and the adaptation scheme, and the LPV 

controller. These elements collectively form the 

controller for the nonlinear Galerkin system. 

Remark 2: Note that the bounds for θ  in Step 2 are 

obtained prior to controller design. This is inevitable 

because for the self-scheduled LPV controller design 

approach utilized [32], the range in which the parameters 

vary must be known so that the matrix inequalities may 

be set up at the vertices. Since this paper is a first step 

towards the idea of using adaptation-based LPV models 

for the control of Galerkin-type nonlinear systems, we 

cannot yet formally guarantee that the vertices of the 

parameter box Θ  resulting from Step 2 will lead to 

feasible matrix inequalities for all possible cases. 

However, our experience applying the method to several 

real-life problems (including the case study in Section 7 

of the paper, as well as others) has shown that many 

cases do indeed result in LPV models with parameter 

ranges that lead to feasible inequalities for controller 

design. 

Even though it cannot be guaranteed yet that the 
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parameter box Θ  will always yield to solvable 

inequalities, some heuristic strategies may be tried if no 

suitable controller can be designed due to conservative 

bounds from Step 2. For example, instead of a simple 

box, one can compute the convex hull of the parameter 

trajectories obtained from the various test signals. This 

may lead to better conditioned inequalities since the 

convex hull can cover the parameter trajectories within a 

smaller volume and than a simple box. One can also 

utilize an iterative strategy for the design as follows: 

First, a small range for the parameters (perhaps even 

constant values) is selected, the matrix inequalities are 

set up and the controller is designed.Then the parameter 

trajectories of the closed-loop system are observed to see 

if they are within the range for which the design was 

made. If not, the parameter range is enlarged based on 

the closed-loop parameter trajectories, and the controller 

design is repeated. Then the closed-loop system is 

formed with this new controller, the parameter 

trajectories are recorded and checked against the 

parameter range. The procedure is repeated until the 

closed-loop trajectories are in agreement with their 

design values. 
 

6. ANALYSIS OF THE CLOSED-LOOP SYSTEM 
 

In Theorem 1 below, we analyze the closed-loop 

system to justify the validity of the approach described in 

the previous section.  

Theorem 1: Consider the closed-loop system shown 

in Fig. 2, where the elements inside the dashed box 

(which collectively form the controller for the nonlinear 

Galerkin system) are designed as described in Section 5. 

Then:  

1. The trajectories of the LPV system (9), with the 

parameter vector modified through the adaptation 

mechanism (11), will converge to the trajectories of 

the nonlinear Galerkin system (2).  

2. The control signal u will asymptotically stabilize the 

nonlinear Galerkin system (2).  

3. The parameter trajectory generated by the adaptation 

scheme (11) will be contained in the p-dimensional 

box Θ  (26) for all 0.t ≥   

Proof: See Appendix.                         � 

The procedure described until this point is illustrated 

in the next section by a flow control problem that occurs 

in real-life, namely, suppression of oscillations caused by 

air flowing over a cavity.  
 

7. EXAMPLE: CAVITY FLOW CONTROL 
 

We now consider a physical flow control problem 

example, namely the suppression of unwanted oscilla-

tions generated by the air flow over a shallow cavity. A 

schematic representation is illustrated in Fig. 3. This is a 

problem that has captured significant research interest 

[18,19,22-24], and has been an initial motivation for this 

study. Air flow over a shallow cavity is characterized by 

a strong self-sustained resonance produced by a natural 

feedback mechanism. Shear layer structures impacting 

the cavity trailing edge scatter acoustic waves that 

propagate upstream and reach the shear layer receptivity 

region, where they tune and enhance the development 

and growth of shear layer structures. The resulting 

acoustic fluctuations can be very intense and are known 

to cause, among other problems, store damage and 

airframe structural fatigue in weapons bay applications. 

To suppress or reduce the pressure fluctuations inside the 

cavity, feedback control is applied to the flow by using a 

synthetic jet actuator, which is typically an acoustic 

actuator located at the cavity trailing edge [23]. A 

schematic illustration of a synthetic jet actuator is given 

in Fig. 4. Synthetic jet actuators are popular for flow 

control since they synthesize the flow from the 

surrounding or ambient fluid, and do not require an 

external source of fluid. A membrane or diaphragm 

oscillates hundreds of times per second, sucking the 

surrounding fluid into a chamber and then expelling it. 

 

7.1. Obtaining a Galerkin model for cavity flow 

The first task is to obtain a Galerkin model for the 

cavity flow process, which will serve as the system that 

we wish to control. In deriving the Galerkin model, we 

start with the Navier-Stokes equations that describe the 

dynamics of the cavity flow. We treat the flow to be 

isentropic to simplify the final form of the system. With 

this treatment, it was shown in [19], that the 

 

Fig. 3. Control of cavity flow resonance using actuation 

at the cavity trailing edge. (Figure courtesy of 

OSU Gas Dynamics and Turbulence Labora-

tory). 

 

Fig. 4. Schematic diagram of a synthetic jet actuator. 

(Figure courtesy of electronicdesign.com and 

Nuventix Inc.). 
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compressible Navier-Stokes equations can be written as2 

2

2

1 2 1
,

1 Re

1
div 0,

2

Du
c

Dt M

Dc
c

Dt

κ

κ

+ ∇ = ∇

−

−
+ =

u

u

 (42) 

where 
s n

( ) ( ( ) ( ))t u t u t, = , , ,u x x x  is the flow velocity in 

the stream-wise and normal direction, ( )c t,x  is the 

local speed of sound, the operator D Dt t/ = ∂/∂ + ⋅∇u  

stands for the material derivative, and ( )x x y= ,  

denotes Cartesian coordinates over the spatial domain 
2
.Ω ⊂ �  The constants ,κ Re,  and M  denote 

respectively ratio of specific heats, Reynolds number, 

and Mach number. It was also shown in [19] that these 

equations can be expressed in compact form as 

( ) ( ) ( )X= := + + ,�q q C L q Q q q  (43) 

defined on the Hilbert space 2

2
( )= Ω,�LH  of square-

integrable functions on ,Ω  where 
s s0 n

(u u u:= − ,q  

n0 0
)u c c− , − ∈H  is the fluctuations of the flow velocity 

about the mean value 
0 n0 s0 0

( ).u u c= , ,q  In (43), C is a 

constant operator, L is a linear operator, and ( ),Q q q  is 

quadratic in .q  It should also be mentioned that the 

equations above are non-dimensional in the sense that 

the velocities, coordinates and pressures have all been 

scaled by appropriate constants. Once the system in 

written as in (43), it was shown in [35,36] that one can 

employ Proper Orthonormal Decomposition (POD)/Input 

Separation (IS) techniques to arrive at an extended 

expansion of the flow 

0

1

( ) ( ) ( ) ( ) ( ) ( ),
n

i i

i

t a t u tφ ψ
=

, = + +∑q x q x x x  (44) 

where 
i
φ  are the baseline modes, 

i
a  are the POD 

coefficients, u  is the control input and ψ  is the 

actuation mode. The number of baseline modes taken is 

taken to be four, corresponding to 4n =  in the POD 

expansion. This value is a good compromise between the 

amount of energy captured (about 95% for our case) and 

the complexity of the reduced-order model. It was also 

shown in [23,35,36] that substituting (44) into (43), 

employing Galerkin Projection (GP), shifting by the 

equilibrium point ,
d
a  and transforming into modal 

form yields a Galerkin model for the cavity flow process 

of the form 

                                                           
2These equations have been non-dimensionalized by scaling u  

by the freestream velocity ,U
∞

 the local speed of sound by 

the ambient sound speed 1 2( ) ,c RTκ
/

∞ ∞=  where T
∞

 is the 

ambient temperature, the cartesian coordinates x  by the cavi-

ty depth ,D  time by ,D U
∞

/  and pressure by 2
,Uρ

∞
 where 

ρ  denotes mean density. 

( ) ( ) ( ),
in in ain

a La Q a a L u Q u u Q a u= + , + + , + ,�  (45) 

where the matrices L  and 
in
L  are of the form 

1

2

1 3

2 4

0 0

0 0

0 0 0

0 0 0

in

b

b
L L

b

b

σ ω

ω σ

λ

λ

−   
   
   = , =
   
   
      

 (46) 

and 
1 2 1 2 3 4

.b b b bσ ω λ λ, , , , , , , ∈�  The system (45) 

obtained through the procedure described above 
represents the dynamics of the deviation from the mean 
flow 

0
.q  The control task is to suppress the oscillations 

causing these deviations, and drive the system back to its 
mean flow value, i.e., achieve 0a→  as .t →∞  For 
the numerical simulations below, parameter values from 
the OSU GDTL cavity flow experimental setup 
described in [23,35,36] will be used. 
 
7.2. Application of the proposed approach 

After the Galerkin model for the flow process is 
obtained, the next step is to build the LPV model, 
adaptation scheme and the LPV controller as described 
in Section 5. 

Step 1: The first step is to construct the LPV model (9) 
and the adaptation mechanism (11) without its 
dissipative terms. We define the parameter vector to be 

adapted as 

1 2 1 2 3 4
ˆ ˆ ˆ ˆˆ ˆ ˆˆˆ .

T

L
b b b bθ σ ω λ λ :=    For future 

reference let us also denote the individual elements of the 

state vector of the Galerkin model as 
1 2 3 4

[ ]
T

a a a a a=  

and the elements of the reconstructed state vector as 

1 2 3 4
ˆ ˆ ˆ ˆ ˆ[ ] .

T
a a a a a=  For system (45) in modal form, the 

matrix ( )
L
a uΦ ,  in (11) can be written as 

1 2

2 1

3

4

0 0 0 0 0

0 0 0 0 0
( )

0 0 0 0 0 0

0 0 0 0 0 0

L

a a u

a a u

a u

a u

a u

− 
 
 Φ , := .
 
 
  

 

The constant k  is selected as 1000k =  to satisfy (24) 
and also to obtain a reasonable response speed for the 
adaptation mechanism. The dissipative terms ϒ  and 
Ψ  are set to zero for this step. 

Step 2: To determine the range Θ  in which the 

parameter vector ˆ
L

θ  will vary, the Galerkin system (2), 

the LPV model (9) and the adaptation system (11) were 
run together under a high number input signals of various 
types including ramp functions, sine functions, chirp 
functions, square waves and white noise, and the values 
assumed by the parameters under these excitation signals 
were recorded. As an example we show one of 
theseinputs in Fig. 5, namely a chirp excitation with its 
frequency varying between 1 Hz and 0.01 Hz. These 
frequencies were selected since they roughly represent 
the top and bottom limits that the actuator is assumed to 
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be capable of producing.3 Fig. 6 shows the variation in 
the parameter values under this chirp excitation. 
Observing the range in which the parameter values vary 
for the chirp excitation in the figure, and also for other 
excitation cases mentioned above (e.g., sine functions, 
chirp functions, square waves and white noise at various 
amplitudes and frequencies), the polytope Θ  such that 
ˆ
L

θ ∈Θ  is chosen to be the 8-dimensional box 

8

1

2 1

2 3

2 3

4

ˆ ˆ{ 0 0500 0 2500

ˆˆ1 0000 2 8000 0 3100 0 1700

ˆˆ0 3500 0 0400 0 4400 0 3990

ˆ ˆ0 4300 0 3810 0 1680 0 2010

ˆ ˆ0 4300 0 3810 0 1680 0 2010

ˆ0 0960 0 0730}

L

b

b b

b b

b

θ σ

ω λ

λ

Θ = ∈ : − . < < . ,

. < < . ,− . < < . ,

− . < < − . ,− . < < . ,

− . < < . ,− . < < . ,

− . < < . ,− . < < . ,

− . < < . .

�

 (47) 

Step 3: The next step in the process is the design of 
the controller. As explained in Section 4, the approach to 
control design is to treat the system (16) as an LPV 

                                                           
3Recall that like all variables, the frequencies are also in the 

non-dimensionalized scale. The actual frequencies that the 

actuator can produce are a few thousand times higher. 

system, where the parameters keep changing with time 
and are supplied by the adaptation mechanism (11). The 
parameter values are available in real-time and are to be 
utilized by the controller, where the control design is 
based on the self-scheduled 

∞
H  control techniques. 

Forthe cavity flow problem there are eight parameters 
and the parameter polytope Θ  is a simple box in 8D 
space given in (47). Once the parameter box Θ  is 
known, the controller matrices are obtained using results 
from [32] as described in Section 4. The matrices ,

cl
A  

,
cl

B
cl

C  and 
cl

D  given in (20) are 

0

ˆ ˆˆ ˆ( ) ( ) 0

0 0

L in L u

u

L L C
A

A

θ θ 
= , 
  

 
0

ˆˆ( )

0

L
L kI

B
θ − −

= , 
 

 

0

0 0

0 0
u

I
C

C

 
= , 
 

 

0 0

0

0

u
B

I

 
 = , 
  

B  
0 0

0 0

I

I

 
= , 
 

C  

12 21

0
0 ,

I

 
= , =  

 
D D  

and 

1

2

ˆˆ 0 0

ˆ ˆ 0 0
ˆˆ( )

ˆ0 0 0

ˆ0 0 0

L
L

σ ω

ω σ
θ

λ

λ

− 
 
 = ,
 
 
  

 

1

2

3

4

ˆ

ˆ
ˆˆ ( )

ˆ

ˆ

in L

b

b
L

b

b

θ

 
 
 = .
 
 
  

 

The matrices ,
u

A
u

B  and 
u

C  above define an input 

filter for the system, which for the flow problem at hand, 
are simply selected so as to yield a first order band-pass 
Butterworth filter with 

low
0 01f = .  Hz and high 1f =  

Hz. This is justified by the fact that the actuation is 
produced through the motion of an acoustic diaphragm 
inside the actuator, which can only oscillate between a 
certain frequency range. Such a simple model will be 
sufficient for the purposes of this study; the reader 
interested in further details of the acoustic actuator and 
more sophisticated models of its dynamics is referred 
to [37]. The controller matrices ,

cl
A ,

cl
B

cl
C  and 

cl
D  

were obtained using the functions of the Robust Control 
Toolbox in MATLAB® which resulted in a quadratic 

∞
H  performance 5 8432γ = .  from e to col( ).z a u= ,  

Remark 3: For the problem studied, the dimension of 

θ  is eight, which leads to 8
2 256=  matrix inequalities 

to be solved at the vertices of .Θ  Although it was 
possible to find a solution in our case using MATLAB® 
Robust Control Toolbox, there may be many cases in 
which these inequalities are not feasible. At this point we 
cannot yet claim that the LPV systems resulting from the 
proposed approach will always be amenable to self-
scheduled controller design methods [32]; nonetheless, in 
many cases the proposed approach will indeed result in 
models to which the method in [32] can be applied and 
hence the usefulness of the approach in this paper. 

Step 4: Once the LPV controller is obtained, the 

Fig. 5. Chirp signal excitation. 
 

Fig. 6. Parameter vector ˆ
L

θ  under chirp excitation. 
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dissipative terms ϒ  and Ψ  are incorporated into the 
adaptation dynamics (11), with values in (12)-(15) 
selected following Step 4 in Section 5 as follows: 

10,
r
k = 50,

x
k = 1,

d
k = 50

s
k =  and (0 1000,

c
lθ = .  

1 9000,. 0 0700,− . 0 1950,− . 0 0205,− . 0 0245,− . 0 0165,.

0 0115).− .  

Step 5: The final step in the process is to build, 
implement and test the full system shown in Fig. 2. Figs. 
7-10 show the numerical simulation results for this 
configuration. For test purposes, the control action is set 
to be 0u =  until 100,t =  so that the system runs in 
open-loop for this period. The controller is incorporated 
into the system by closing the loop at 100.t =  It can be 
seen from Fig. 8 that the LPV controller is successful in 
achieving the desired stabilization of driving ˆ 0.a→  
Fig. 9 shows the adaptation error ˆ ,e a a= −  which 

seems to remain less that 3
10 .

−  The fact that ˆ 0a→  
also implies that ,a e→  and since error is very small, 

this practically means that the 0a→  as well, as 
confirmed from Fig. 7. Fig. 10 shows the state vector 

ˆ
L

θ  estimated by the adaptation mechanism.It can be 

seen that there are significant variations in the estimated 
parameter values throughout the process. Nevertheless, 
since these parameters are estimated internally by the 
adaptation mechanism and hence available to the 
controller in real time, the controller can utilize the 

current value of the parameter vector ˆ ( )
L
tθ  to automat-

ically schedule its matrices and hence succeeds in the 
desired stabilization despite considerable fluctuations in 

the parameter estimates ˆ .
L

θ  

 

8. CONCLUSIONS, DISCUSSIONS AND  

FUTURE WORKS 

 
In this paper we considered a novel methodology for 

the control of nonlinear Galerkin models, which are an 
important class of nonlinear systems that arise frequently 
in the modeling of infinite dimensional systems. A linear 
parameter-varying (LPV) system is built to represent the 
nonlinear model, and an adaptation scheme is construct-

 

Fig. 7. Flow system states for closed-loop operation
with the controller turned on at 100.t =  

 

Fig. 8. Reconstructed states â  for closed-loop opera-
tion with the controller turned on at 100.t =  

Fig. 9. Error between the reconstructed state â  and 
the actual state a  for closed-loop operation 
with the controller turned on at 100.t =  

 

Fig. 10. Parameter vector ˆ
L

θ  for closed-loop opera-

tion with the controller turned on at 100.t =  
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ed to modify the parameter vector of the LPV system. 
The controller can then be designed on the LPV model, 
instead of the much more complicated nonlinear 
Galerkin system. An automatically scheduled 

∞
H  

control technique is utilized for control design and it is 
shown that this controller does indeed stabilize the 
nonlinear Galerkin model, despite being designed on the 
simple LPV model. The approach proposed is illustrated 
with an example on cavity flow control, where the design 
is seen to produce satisfactory results.  

The main contribution of the paper is to illustrate a 
novel approach to the control of nonlinear Galerkin 
systems through building an LPV model representing the 
nonlinear Galerkin model by adaptation techniques. 
Nonlinear Galerkin models are encountered frequently in 
fields such as partial differential equations (PDEs) and 
flow control problems; however, systematic analysis and 
design methodologies on these models have not been 
established. The method outlined in the paper reduces the 
complicated nonlinear Galerkin system to a simpler LPV 
system for control design purposes. Owing to their linear 
structure, LPV models are easier to analyze and control, 
thus many results and standard design techniques exist in 
literature dealing with LPV systems. In the paper we 
perform controller design using one such approach, 
namely the automatically-scheduled 

∞
H  design method. 

Once the LPV model is at hand, such a design can be 
performed straightforwardly using readily available 
routines in standard numerical computing software (e.g., 
MATLAB®. While the controller design is performed on 
the much simpler LPV model, we prove that it will 
achieve the desired stabilization when applied to the 
nonlinear Galerkin system as well. Such an approach can 
provide useful options and guidelines for researchers and 
engineers faced with the control of processes represented 
by Galerkin models.  

Future research directions include using different 
adaptation laws and control techniques, and application 
of current and new approaches to other real-life flow 
control problems.  

 
APPENDIX: PROOF OF THEOREM 1 

The proof relies on the concepts of dissipative systems 
and input-to-state stability (ISS) [38,39]. Since the 
controller is computed for the augmented LPV system 
using the approach in [32] as outlined in Section 4, the 
feedback system formed with this controller (18) and the 
LPV system (21)-(23) is a linear system satisfying 

2 2 2
col( )z a u eγ= , <� � � � � �  for all ˆ .

L
θ ∈Θ  Hence the 

system (18), (21)-(23) is dissipative with a supply rate 

2 2 2( ) ( )q e a u e a uγ, , = − ,� � � �  (48) 

and storage function 

( ) T

a a a cl a
V x x X x=  (49) 

so that 

( )
a

V q e a u≤ , ,  (50) 

is satisfied. Here, 
cl

X  is the solution of the matrix 

inequalities for the self-scheduled controller design, and 
ˆcol( )

a
x a ξ ζ:= , ,  is the augmented state vector contain-

ing the states of the LPV plant, the input filter and the 
LPV controller. Note that 

( ) ( ) ( ),
a a a a aa
x V x xαα ≤ ≤� � � �  (51) 

where 2

min
( ) ,

a
r rλα :=  2

max
( )

a
r rλα :=  and 

min
,λ  

max
λ  are the smallest and largest eigenvalues of .

cl
X  

Let us also define 

1 1ˆ( )
2 2

T T

t L L L
V e e eθ θ θ, := + � �  (52) 

and note that 

( col( ) ) ( ) ( ( ) ),
L t L t Lt

e V e eθ θ α θα , ≤ , ≤ ,
� � �� � � �  (53) 

where 21

2
( )
t
r rα :=  and 21

2
( ) .

t
r rα :=  Consider now 

the entire system including the LPV plant, input filter, 
LPV controller, adaptation law and the nonlinear 
Galerkin model, which is an autonomous system (Fig. 2). 

Consider the state vector ˆˆcol( )
e L
x a eξ ζ θ:= , , , ,  for the 

entire system. Note that the state of the Galerkin system 
is included implicity since ˆ .a a e= −  Consider a 
candidate Lyapunov function 

ˆ( ) ( ) ( ),
e a t L

V x V a V eξ ζ θ:= , , + , �  (54) 

where 
a

V  is as defined in (49) and 
t

V  is as in (52). 

Note that 

( ) ( ) ( ),
e e e ee
x V x xαα ≤ ≤� � � �  (55) 

where 2

4
( ) ,
e
r k rα =  2

5
( )

e
r k rα =  and 

4
,k  

5
k  are as 

in (33) and (34). Differentiating (54) along trajectories 
yields 

ˆ( ) ( ) ( ),
e a t L

V x V a V eξ ζ θ= , , + , �� � �
 (56) 

where we know that 
aV�  satisfies (50). To obtain a 

bound for ,
tV�  note from (52) that 

( )

ˆ( ) ( ) ( )

.( ) ( ) ( )

T T

L Lt

T
L L L L N N

T T
L L L L

e eV

e a u ke a u a u

a u e a u e a u

θ θ

θ θ θ

θ θ θ

 
 
 

= +

= Φ , − −Φ , −Φ ,

+ −Φ , − ϒ , , −Ψ , , ,

�� �� �

� � �

 

Substituting (12)-(15) and simplifying 

* 4

* 2

ˆ( ) ( ( )

( ) )

ˆ ( ) ( ) ( )

( )

( ( ) ( )

( ) )

L

T T T

L L L Lt

N N

T T T T T
L c L L r L

T T
L s L L L

T T

L L N N

L c

e a u e ke e a uV

a u

a u e a u e k a u

k e e a u

e ke e a u a u

a u

θ θ

θ

θ θ θ θ

θ θ θ θ

θ θ

θ

= Φ , − − Φ ,

+Φ ,

− Φ , + Φ , − ,

− − Ψ , , ,

= − − Φ , +Φ ,

−Φ ,

�

� � � �

� � � �� �
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(

)

* 4 * 2

2

in ain

in in

4

2

2

2

col( )

( )

( ) ( )

( )

col( )

( ).T T
L L L

T T

L r L r L s L

T
L L

T

c c

T L

r L

L

T L
s

L

k k a u k e

e a u

k e e La L u Q a a Q a u

Q u u L a L u

k a u

k e e a u

θ θ θ θ

θ θ

θ
θ

θ

θ
θ θ θ

θ

,

− , −

− Ψ , , ,

= − − + + , + ,

+ , + +

− ,

− − Ψ , , ,

� � � �� � � �

� �

� �

�
� � �

�� �

�
� � �� �

�� �

 

Taking norms and simplifying 

(

)

2

in

2 2
ain in

4 2

in

2

6

65

2 4

7

2

col( )

( )

col( )

col( )

col( ) col( )

t

c

c r s

T
L L

r

T

s L

k e e L a L uV

Q a Q a u Q u L a

L u k a u k e

e a u

k e k e a u

k e a u

k e a u k a u

k e

θ θ

θ

,

≤ − + +

+ + + +

+ − , −

− Ψ , , ,

≤ − + ,

+ ,

+ , − ,

− −

� � � � � � �� � � �� �

� �� � � �� �� � � �� � � �� �

� �� � � � � �

� �

� � � �� �

� �� �

� �� � � �

�� � ( ),
L

e a uθΨ , , ,�

 

where 
6
,k

65
k  and 

7
k  are as given in (25), (35), (36). 

Using Young’s inequality4 

2 2 2 2 2 2

6 65

2 2 4 4 2
7

col( )

( ) col( )

( ).

t

r s

T
L L

k e k e k e a uV

e k a u k a u k e

e a uθ θ

≤ − + + + ,

+ + , − , −

− Ψ , , ,

� � � � � � � � �

� � � � � � � �

� �
 

Collecting similar terms and using the fact that 

( ) 0T

L L
e a uθ θΨ , , , ≥� �  yields an upper bound for 

tV�  as 

( )2 2 2 2

6 65

2 4

7

1 col( )

col( ) ( ),

st

T

r L L

k k k k e a uV

k k a u e a uθ θ
 
 
 

≤ − + − − − + ,

− − , − Ψ , , ,

� � � � �

� �� �

 (57) 

( )2 2 2 2

6 65

2 4

7

1 col( )

col( ) .

st

r

k k k k e a uV

k k a u
 
 
 

≤ − + − − − + ,

− − ,

� � � � �

� �

 (58) 

Substituting (50) and (58) into (56) yields 

( )

( )

2 2 2

2 2 2

6 65

2 2 4

7

2 2 2 2

6 65

2 4

7

ˆˆ( ) ( ) ( )

col( )

1

col( ) col( )

1

col( ) ,

e a t L

s

r

s

r

V x V a V e

e a u

k k k k e

a u k k a u

k k k k e

k k a u

ξ ζ θ

γ

γ

 
 
 

 
 
 

= , , + ,

≤ − ,

− + − − −

+ , − − ,

≤ − + − − − −

− − ,

� � �

� � � �

� �

� � � �

� �

� �

 (59) 

                                                           
4
Let ,x y ε

+
, , ∈�  then 

22

2 2
.

yx
xy

ε

ε

≤ +  

which will be negative since from (24), (29) and (32) we 

know that 2

6
1,k k> +

2 2

65s
k k γ> +  and 2

7
.

r
k k>  Thus, 

all trajectories of the system are bounded and 0,e→  

0a→  and 0.u →  The fact that ˆ 0e a a= − →  
implies ˆ ,a a→  which states that the trajectories of the 
LPV system, whose parameter variations are controlled 
by the designed adaptation mechanism, will eventually 
approach those of the original nonlinear Galerkin model. 
The fact that 0a→  states that the LPV control design 
based on the LPV plant is indeed successful in 
asymptotically stabilizing the origin of the nonlinear 
Galerkin model. This proves the first two statements of 
the theorem. 

For the third statement, consider the error dynamics in 
(10) and parameter adaptation dynamics given by (11). 
We will first show that the system (10)-(11) is input-to-
state stable (ISS), with (a,u) viewed as the input to the 
system. We know that the system (10)-(11) is ISS if and 
only if it has an ISS-Lyapunov function. Consider 

ˆ( )
t L

V e θ,  given in (52) as a ISS-Lyapunov function 

candidate for the system. Differentiating Vt along 
trajectories of the system yields the expression in (57), 
and from (29) it follows that 

( )2 2 2 2

6 65
1 col( )

( )

st

T

L L

k k k k e a uV

e a uθ θ

≤ − + − − − + ,

− Ψ , , , .

� � � � �

� �
 (60) 

Since (24) and (32) are satisfied, it holds that 
s

k k+ −

2 2

6 65
1 0.k k− − >  Also, if col( ) col( ) ,

L x
e k a uθ, ≥ ,

�� � � �  

then from (17) it follows that 

( )2 2 2 2

6 65

2

2 2

8

2 2

8

2

8

2

9

1 col( )

,

col( ) col( ) ,

1
col( ) col( ) ,

1
col( ) ,

col( ) ,

st

d L

Lt

L Lt

x

Lt

x

Lt

k k k k e a uV

k

k e a uV

k e eV
k

k eV
k

k eV

θ

θ

θ θ

θ

θ

≤ − + − − − + ,

−

≤ − , + ,

≤ − , + ,

 
≤ − − , 

 

≤ − ,

� � � � �

�� �

�� � � � �

� �� � � � �

�� � �

�� � �

 (61) 

where 2 2

8 6 65
min( 1 )

s d
k k k k k k= + − − − ,  and 

9 8
k k:=

1
.

x
k
−

−  Note that 
9

0k >  as (31) and (32) hold. Then, if 

we define two 
∞

K  functions as ( ) ,
x

r k rχ :=  ( )rα :=

2

9
,k r  it is true that 

( ) ( )col( ) col( ) col( ) ,
L Lt

e a u eVθ χ α θ, ≥ , ⇒ ≤ − ,
� ��� � � � � �

 (62) 
which is the definition of Vt being an ISS-Lyapunov 
function. This shows that system (10)-(11) is ISS with 
col( )a u,  regarded as the input. From the definition of 

ISS, this implies that there exists a class KL  function 
β  and a class K  function γ  such that 
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{ }

col( ( ) ( ))

max (col( (0) (0)) ) ( col( ) ) ,

L

L

e t t

e t a u

θ

β θ γ
∞

,

≤ , , , ,

�� �

� � �
 (63) 

where γ  can be shown to be of the form 1

t
γ α

−

= �

t
α χ�

5  Since ,β ∈KL  and (0) 0,e =
ˆ (0) 0
L

θ =  from 

(40)-(41), it holds that for all 0t ≥  

1

1

col( ( ) ( )) ( col( ) ),

col( ( ) ( )) ( col( ) ),

col( ( ) ( )) ( col( ) ),

col( ( ) ( )) col( ) ,

L

L tt

L tt

L x

e t t a u

e t t a u

e t t a u

e t t k a u

θ γ

θ α χα

θ α χα

θ

∞

−

∞

−

∞

∞

, ≤ ,

, ≤ ,

, ≤ ,

, ≤ ,

�� � � �

�� � � � � �

�� � � � � �

�� � � �

 (64) 

and since ( )) col( ( ) ( ))
L L
t e t tθ θ≤ ,� �� � � �  it follows that  

( )) col( )
L x
t k a uθ

∞
≤ , .�� � � �  (65) 

Recall that we know col( )a u
∞

,� �  exists since the 

boundedness of all trajectories was established in 
Theorem 1. In fact, note that for the Lyapunov function 
V  defined as in (54), it can be seen from (59) that 

0V ≤�  along trajectories. Hence, using (55), we can 
write 

2 2

4 5

2 1 2

4 5

( ( ) ) ( ( )) ( (0)) ( (0) )

( ) (0)

( ) (0)

e e e ee e

e e

e e

x t V x t V x x

k x t k x

x t k k x

α α

−

≤ ≤ ≤

≤

≤ .

� � � �

� � � �

� � � �

 (66) 

Note that 

2 2 2 2 2

2 2 2
10

ˆ ˆcol( )

ˆcol( ) ,
u

a u a e u a e

C k a eξ ξ

, = − + ≤ +

+ ≤ , ,

� � � � � � � � � �

� � � � � �
 

where 

2

10
ˆmax{1 }. Since col( ) ,

u e
k C a e xξ:= , , , ≤� � � � � �  

we have 

2 2

10
col( ) .

e
a u k x, ≤� � � �  (67) 

Then from (66) and (67) we obtain 

2 1 2

10 4 5
col( ( ) ( )) (0)

e
a t u t k k k x

−

, ≤� � � �  

and thus 

1

10 4 5
col( ) (0) .

e
a u k k k x

−

∞
, ≤� � � �  (68) 

Substituting (68) into (65), and using (30) yields 

1

10 4 5

1

10 4 5 IC

( )) (0) ,

ˆ ( ) ,

ˆ ( )
2

L x e

L c x

L c

t k k k k x

t k k k k k

t
θ

θ

θ θ

δ
θ θ

−

−

≤

− ≤

− ≤ .

�� � � �

� �

� �

 (69) 

                                                           
5See for instance [39, p. 22]. 

Recall from (26), (27) and (28) that 
c

θ  is the centroid 

of the p -dimensional box ,Θ  and 
θ

δ  is the length of 

its shortest side. Hence (69) states that the parameter 

trajectories ˆ ( )
L
tθ  will be contained in a p-dimensional 

sphere S  centered at the centroid of ,Θ  whose radius 

is shorter that half the length of the shortest side of .Θ  
Clearly ,⊂ ΘS  hence the trajectories will be contained 

in ,Θ  i.e., ˆ ( ) .
L
tθ ∈Θ  This proves the third statement 

of the theorem.  
Remark 4: Note that the controller (18) designed for 

the LPV system (21)-(23) is also an LPV system itself. 
Although it was proven formally in Theorem 1 that this 
controller will stabilize the Galerkin system, one may 
still have some intuitive scepticism towards the result. It 
is possible to think that the LPV controller is essentially 
a linear controller and may not be powerful enough to 
stabilize the nonlinear Galerkin model (2). To address 
this concern, it should first be noted that the control input 
affects the system through three terms: 

in
,L u  

ain
( )Q a u,

and 
in
( ).Q u u,  The latter two terms are quadratic, and 

hence will enable a linear controller to generate terms 
that are quadratic in the state. An additional point to note 
is that the controller is not LTI, but LPV. That is, the 
parameters are allowed to vary with time, and how they 
will vary with time is determined by the designer. For 
instance, assume that we have an LPV control law of the 
form ( ) ( ) ( )u t K t a t= −  where K time varying. Suppose 

we design the time variation of the parameter as 
2

1 2
( ) ( )K t c c a t= +  where 

1 2
c c,  are positive numbers. 

Then the control law is essentially of the form 
2 3

1 2 1 2
( ) ( ( ) ) ( ) ( ) ( )u t c c a t a t c a t c a t= − + = − −  which is 

nonlinear in the state vector .a  In summary, if needed, 
the LPV structure for the controller has the ability to 
generate control laws that are nonlinear in the state 
vector .a  

 

REFERENCES 

[1] S. Sirisup, G. E. Karniadakis, and Y. Yang, “Wave-
structure interaction: simulation driven by quantita-
tive imaging,” Proc. of the Royal Society of London, 

Series A (Mathematical, Physical and Engineering 

Sciences), vol. 460, no. 2043, pp. 729-755, 2004. 
[2] Z.-M. Chen and W. G. Price, “Chaotic behavior of a 

galerkin model of a two-dimensional flow,” Chaos, 
vol. 14, no. 4, pp. 1056-1068, 2004. 

[3] N. Sobh, J. Huang, L. Yin, R. B. Haber, D. A. Tor-
torelli, and R. W. Hyland Jr., “A discontinuous ga-
lerkin model for precipitate nucleation and growth 
in aluminium alloy quench processes,” Internation-

al Journal for Numerical Methods in Engineering, 
vol. 47, no. 1-3, pp. 749-767, 2000. 

[4] S. Chippada, C. N. Dawson, M. L. Martinez, and M. 
F. Wheeler, “Finite element approximations to the 
system of shallow water equations. i. continuous-
time a priori error estimates,” SIAM Journal on 

Numerical Analysis, vol. 35, no. 2, pp. 692-711, 



Coşku Kasnakoğlu 

 

 

760 

1998. 
[5] U. E. Volmar and H. W. Muller, “Quasiperiodic 

patterns in rayleigh-benard convection under gravi-
ty modulation,” Physical Review E (Statistical 

Physics, Plasmas, Fluids, and Related Interdiscip-

linary Topics), vol. 56, no. 5, pp. 5423-5430, 1997. 
[6] K. Kumar, S. Fauve, and O. Thual, “Critical self-

tuning: the example of zero prandtl number convec-
tion,” Journal de Physique II (Atomic, Molecular 

and Cluster Physics, Chemical Physics, Mechanics 

and Hydrodynamics), vol. 6, no. 6, pp. 945-51, 
1996. 

[7] D. M. Gorinevsky, “Galerkin approximation in 
modeling of controlled distributed-parameter flexi-
ble systems,” Computer Methods in Applied Me-

chanics and Engineering, vol. 106, no. 1-2, pp. 
107-128, 1993. 

[8] T. Stribling and W. H. Matthaeus, “Relaxation 
processes in a low-order three-dimensional magne-
tohydrodynamics model,” Physics of Fluids B 

(Plasma Physics), vol. 3, no. 8, pp. 1848-1864, 
1991. 

[9] S. J. Linz, M. Lucke, H. W. Muller, and J. Nieder-
lander, “Convection in binary fluid mixtures: trav-
eling waves and lateral currents,” Physical Review 

A (General Physics), vol. 38, no. 11, pp. 5727-41, 
1988. 

[10] H. W. Muller and M. Lucke, “Competition between 
roll and square convection patterns in binary mix-
tures,” Physical Review A (General Physics), vol. 
38, no. 6, pp. 2965-2974, 1988. 

[11] D. E. Dietrich, “A numerical study of rotating an-
nulus flows using a modified galerkin method,” 
Pure and Applied Geophysics, vol. 109, no. 8, pp. 
1826-1861, 1973. 

[12] B. R. Noack and H. Eckelmann, “A global stability 
analysis of the steady and periodic cylinder wake,” 
Journal of Fluid Mechanics, vol. 270, pp. 297-330, 
1994. 

[13] B. R. Noack, K. Afanasiev, M. Morzynski, G. Tad-
mor, and F. Thiele, “A hierarchy of low-
dimensional models for the transient and post-
transient cylinder wake,” Journal of Fluid Mechan-

ics, vol. 497, pp. 335-63, 2003. 
[14] B. R. Noack, G. Tadmor, and M. Morzynski, Actua-

tion models and dissipative control in empirical Ga-
lerkin models of fluid flows,” Proc. of the Ameri-

can Control Conference, Boston, MA, 2004. 
[15] B. R. Noack, G. Tadmor, and M. Morzynski, “Low 

dimensional models for feedback flow control. part 
I: empirical Galerkin models,” Proc. of the 2nd 

AIAA Flow Control Conference, Portland, OR, 
AIAA Paper 2004-2408, 2004.  

[16] G. Tadmor, B. R. Noack, M. Morzynski, and S. 
Siegel, “Low-dimensional models for feedback 
flow control. part II: controller design and dynamic 
estimation,” Proc. of the 2nd AIAA Flow Control 

Conference, Portland, OR, AIAA Paper 2004-2409, 
2004. 

[17] B. R. Noack, P. Papas, and P. A. Monketwitz, “The 

need for a pressure-term representation in empirical 
Galerkin models of incompressible shear flows,” 
Journal of Fluid Mechanics, vol. 523, pp. 339-365, 
2005. 

[18] C. W. Rowley and J. E. Marsden, “Reconstruction 
equations and the karhunen-loeve expansion for 
systems with symmetry,” Physica D, vol. 142, no. 
1-2, pp. 1-19, 2000. 

[19] C. W. Rowley, T. Colonius, and R. M. Murray, 
“Model reduction for compressible flows using 
POD and Galerkin projection,” Physica D, vol. 189, 
no. 1-2, pp. 115-29, 2004. 

[20] P. Yan, X. Yuan, H. Özbay, M. Debiasi, E. Carabal-
lo, M. Samimy, J. M. Myatt, and A. Serrani, “Mod-
eling and feedback control for subsonic cavity 
flows: a collaborative approach,” Proc. of the 44th 

IEEE Conference on Decision and Control, Seville, 
Spain, 2005. 

[21] C. W. Rowley and V. Juttijudata, “Model-based 
control and estimation of cavity flow oscillations,” 
Proc. of the 44th IEEE Conference on Decision and 

Control, Seville, Spain, 2005. 
[22] K. Fitzpatrick, Y. Feng, R. Lind, A. J. Kurdila, and 

D. W. Mikolaitis, “Flow control in a driven cavity 
incorporating excitation phase differential,” Jour-

nal of Guidance, Control, and Dynamics, vol. 28, 
no. 1, pp. 63-70, 2005. 

[23] M. Samimy, M. Debiasi, E. Caraballo, A. Serrani, 
X. Yuan, J. Little, and J. H. Myatt, “Feedback con-
trol of subsonic cavity flows using reduced-order 
models,” Journal of Fluid Mechanics, vol. 579, pp. 
315-346, 2007. 

[24] E. Caraballo, J. Little, M. Debiasi, and M. Samimy, 
“Development and implementation of an experi-
mental based reduced-order model for feedback 
control of subsonic cavity flows,” Journal of Fluids 

Engineering, vol. 129, pp. 813-824, 2007. 
[25] W. R. Graham, J. Peraire, and K. Y. Tang, “Optimal 

control of vortex shedding using low-order models. 
i - open-loop model development,” International 

Journal for Numerical Methods in Engineering, vol. 
44, pp. 945-972, 1999. 

[26] S. N. Singh, J. H. Myatt, G. A. Addington, S. Ban-
da, and J. K. Hall, “Optimal feedback control of 
vortex shedding using proper orthogonal decompo-
sition models,” Trans. of the ASME. Journal of Flu-

ids Engineering, vol. 123, no. 3, pp. 612-618, 2001. 
[27] M. Krstic, P. V. Kokotovic, and I. Kanellakopoulos, 

Nonlinear and Adaptive Control Design, John Wi-
ley & Sons, Inc. New York, NY, USA, 1995. 

[28] K. J. Astrom and B. Wittenmark, Adaptive Control, 
Addison-Wesley Longman Publishing Co., Inc. 
Boston, MA, USA, 1994. 

[29] K. S. Narendra and A. M. Annaswamy, Stable 

Adaptive Systems, Prentice Hall Information and 
System Sciences Series, 1989. 

[30] J. J. E. Slotine and W. Li, Applied Nonlinear Con-

trol, Prentice Hall, Englewood Cliffs, NJ, 1991. 
[31] C. P. A. Ioannou and J. Sun, Robust Adaptive Con-

trol, Prentice-Hall, Upper Saddle River, NJ, 1996. 



Control of Nonlinear Systems Represented by Galerkin Models Using Adaptation-based Linear Parameter-varying Models 

 

761

[32] P. Apkarian, P. Gahinet, and G. Becker, “Self-
scheduled H-infinity control of linear parameter-
varying systems-a design example,” Automatica, 
vol. 31, no. 9, pp. 1251-1261, 1995. 

[33] G. Becker and A. Packard, “Robust performance of 
linear parametrically varying systems using para-
metrically-dependent linear feedback,” Systems & 

Control Letters, vol. 23, no. 3, pp. 205-215, 1994. 
[34] A. Packard, “Gain scheduling via linear fractional 

transformations,” Systems & Control Letters, vol. 
22, no. 2, pp. 79-92, 1994. 

[35] C. Kasnakoglu, E. Caraballo, A. Serrani, and M. 
Samimy, “Control input separation methods applied 
to cavity flow,” Proc. of the 27th American Control 

Conference, Seattle, Washington, USA, 2008. 
[36] E. Caraballo, C. Kasnakoglu, A. Serrani, and M. 

Samimy, “Control input separation methods for re-
duced-order model-based feedback flow control,” 
AIAA Journal, vol. 46, no. 9, pp. 2306-2322, 2008. 

[37] K. Kim, M. Debiasi, R. Schultz, A. Serrani, and M. 

Samimy, “Dynamic compensation of a synthetic 
jet-like actuator for closed-loop cavity flow control,” 
AIAA Journal, vol. 46, no. 1, pp. 232-240, 2008. 

[38] E. D. Sontag, Mathematical Control Theory: De-

terministic Finite Dimensional Systems, Springer, 
1998. 

[39] A. Isidori, Nonlinear Control Systems II, Springer, 
London, UK, 1999. 

 

 

Cosku Kasnakoglu received his Ph.D. 

from the Ohio State University in 

Columbus, Ohio, USA. He is currently a 

faculty member with the Department of 

Electrical and Electronics Engineering at 

TOBB University of Economics and 

Technology in Ankara, Turkey. His 

research interests include reduced order 

modeling of flow problems, nonlinear 

control, adaptive control, linear paramter varying systems and 

the control of unmanned air vehicles. 

 


