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In this paper, a dynamical modelling procedure for fluid flow control problems is proposed.
The resulting model is simple in that it consists of a number of linear time-invariant (LTI)
systems, but powerful in that it is capable of representing diverse operating conditions within a
given flow envelope. The procedure makes use of snapshots of the flow process, which are
obtained from experiments or computational fluid dynamics (CFD) simulations. A proper
orthogonal decomposition (POD) expansion of the flow is computed from snapshots, and the
time coefficients of the expansion are coupled with the input values to form the estimation data.
A linear state-space system representing the time coefficients is obtained using subspace
system-identification methods. The procedure is repeated for a number of operating points,
called breakpoints, which are characterized by one or more flow parameters of interest. The
dynamical models obtained at the breakpoints are fused using the output-blending technique.
The modelling procedure is illustrated with a flow control case study, where the flow dynamics
are governed by the Navier–Stokes equations, the flow parameter of interest is the kinematic
viscosity, and the control goal is to regulate the velocity of a given point inside the flow domain.
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1. Introduction

The term fluid refers to substances that continually flow under shear stress, and these
substances are a crucial part of our daily life. All gases, liquids and plasmas are fluids,
and even some solids exhibiting plasticity can be classified as fluids. The flow of fluids
is observed continuously around us, including the air flow over the body of an aircraft
or an automobile, petroleum and natural gas flow in pipelines, water flow around the
hull of a ship or submarine, and the motion of clouds in the atmosphere. The
interdisciplinary field concerned with understanding and influencing the flowing
behaviour of fluids is referred to as flow control, and is an area of high significance
from scientific, industrial and technological perspectives (Gad-el Hak, 2000). Among
extensive studies on the subject, one can find research on the control of: airfoil and
airplane-related flows (Joslin, 1998), channel flows (Baramov et al., 2004), boundary
layers (Kim, 2003), combustion instability (Banaszuk et al., 2004), bluff-body flow
(Dohen et al., 2005), cylinder wakes (Noack et al., 2005), cavity flows (Caraballo et al.,
2008) and vortex shedding (Singh et al., 2001).

The behaviour of fluids is most commonly described by the Navier–Stokes
equations, which are a set of partial differential equations (PDEs) based on continuity
(conservation of mass), conservation of momentum and conservation of energy
(Acheson, 1990; Batchelo, 2000). The Navier–Stokes PDEs describe the fluid flow quite
accurately and are indispensable for the field of computational fluid dynamics (CFD),
a key branch of fluid mechanics, which uses numerical methods and algorithms to
conduct simulations for fluid flow problems (Hirsch, 2007; Versteeg and Malalasekera,
2007). However these PDEs are of very high complexity, involve both time and spatial
derivatives, contain multiple non-linear terms, and the effect of the control input is not
explicit in the equations. These issues make any mathematical analysis and
manipulation on the Navier–Stokes PDEs extremely difficult, and to date, the direct
use of these PDEs is mostly limited to carrying out CFD simulations. Given that the
Navier–Stokes PDEs offer little assistance when it comes to theoretical analysis and
control design, a fundamental research direction in flow control is to obtain low-order
and control-oriented mathematical models to describe the dynamics of flow process.

The most common low-order mathematical models used in flow control are the
so-called Galerkin models (or Galerkin systems), which are obtained by a series of
simplification steps on the Navier–Stokes PDEs (Holmes et al., 1996; Sirovich, 1987).
Important enhancements to these techniques have also been proposed recently based
on the concept of input separation (IS) (Efe and Ozbay, 2004; Kasnakoğlu et al., 2008).
Galerkin models have been used in various flow control applications, including cavity
flow (Caraballo et al., 2008), vortex shedding (Singh et al., 2001), cylinder wake
(Noack et al., 2005) and flow over obstacles (Kasnakoğlu et al., 2009). Despite their
widespread use in flow control, Galerkin models suffer important disadvantages and
difficulties. Although these models are much simpler that the Navier–Stokes
equations, they are still non-linear systems. It is therefore very challenging to perform
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analysis and control design on Galerkin models. Consequently one must either resort
to linearization as in Caraballo et al. (2008), or employ intricate non-linear control
design tools as in Kasnakoğlu et al. (2008, 2009). An additional difficulty is associated
with the derivation of Galerkin systems, where one has to substitute the POD
expansion into the Navier–Stokes equations and then project onto the POD modes.
These computations require complex calculations, manipulations and approximations
on the Navier–Stokes PDEs. As a result of these actions, the Galerkin model behaviour
may deviate significantly from that of the flow process described by the original
Navier–Stokes PDEs, including the loss of stability properties (Noack et al., 2005;
Rempfer, 2000).

In this paper, an alternative modelling procedure for flow control problems, which
addresses the above-mentioned difficulties is outlined. The course of action differs
from standard Galerkin modelling in that once the POD modes are obtained from flow
snapshots, the IS and Galerkin projection (GP) steps are replaced by subspace system-
identification methods (Ljun, 1999; Van Overschee and De Moor, 1996). The time
coefficients obtained from the snapshots are used as the system output, and a linear-
state space model that best represents the time coefficient data is obtained. No direct
manipulations, substitutions or approximations are carried out on the Navier–Stokes
PDEs and hence the errors from these operations are eliminated. In addition, subspace
system identification is much easier to implement than IS and GP, owing to the readily
available routines in commonly used scientific computing packages (eg, MATLAB). It
is also possible to assure the stability of the system resulting from subspace
identification (Lacy and Bernstein, 2003), which is not always the case for GP
(Rempfer, 2000).

An additional issue regarding dynamical models for flow control is that the models
are typically built at around a single operating point. The term operating point refers to
any flow parameter of interest, eg, the density or viscosity of the fluid, the temperature,
and the Reynolds numbers can all be regarded as flow parameters. In certain situations,
a dynamical model describing operation for multiple values of the flow parameter is of
interest. For instance, the fluid viscosity may vary during the operation, or the process
may take place under different temperatures. Dynamical modelling for flow control
under multiple-operating conditions is not a topic that has been researched extensively,
although one finds studies utilizing non-equilibrium modes (Jørgensen et al., 2003;
Noack et al., 2003, and snapshots sets encompassing data from multiple operating
points or transients (Bergman et al., 2005; Ma and Karniadakis, 2002).

In this paper, modelling at multiple operating conditions is considered, which differs
from pre-existing literature in that after the POD modes are obtained from snapshots
comprising multiple operating conditions, a separate linear state-space model is
obtained via subspace identification for each of the flow parameters, which are termed
breakpoints for the model. These outputs of these models are then fused using output-
blending (Hyde, 1995), which enables the calculation of the time coefficients
continuously over the entire range of the flow parameters.

Kasnakoğlu et al. 3
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The ideas in the paper are developed in the following: Section 2 introduces the

problem; Section 3 outlines the dynamical modelling approach; Section 4 presents a

flow control case study and Section 5 ends the paper with conclusions and future
work possibilities.

2. Problem description

In an inertial frame of reference, the general form of the Navier–Stokes PDEs
describing the flow can be expressed as

�
@q

@t
þ q � rq

� �
¼ �rpþ r � Tð�Þþ f ð1Þ

where q is the flow velocity, q is the fluid density, p is the pressure, Tð�Þ is the

(deviatoric) stress tensor, � is the dynamic viscosity, f represents body forces per unit
volume acting on the fluid and r is the del operator (see Batchelor, 2000, for a

complete discussion on the Navier–Stokes PDEs). The flow is subject to the initial

condition

qðx, 0Þ ¼ qinitðxÞ ð2Þ

where qinit 2 H, and to the boundary conditions

Biðq, �Þ
� �

ðx, tÞ ¼ biðx, tÞ, i ¼ 1, . . . , Nb ð3Þ

where x 2 @�, t 2 Rþ, Bi : H� Ck ! H, bi 2 H, Nb 2 N, � � R
2 is the flow domain, and

H is the real Hilbert space H ¼ L2ð�, R2
Þ. A control input � 2 R acts through the

boundary conditions. The operators Bi may include spatial derivatives. The problem
studied in this work is to develop a dynamical model for the fluid flow process in a

form that can be used in standard control system design. In particular, we would like

to obtain a discrete-time linear state-space system of the form

�ðtþ TsÞ ¼ A�ðtÞ þ B�ðtÞ ð4Þ

yðtÞ ¼ C�ðtÞ þD�ðtÞ ð5Þ

where Ts 2 Rþ is the sampling period, � 2 R
n is the state vector, n 2 N is the degree of

the system and y 2 R
N is the output signal, in such a way that (4)–(5) represents the

fluid flow process in the sense that the time variation of the flow is captured by these

dynamics. In addition, it is also desirable to study the operation of the flow process

under different values of one or more flow parameters of interest (eg, density,
viscosity, temperature, Reynolds number etc.). This implies obtaining multiple

systems of the form (4)–(5), and implementing a means to fuse these systems together.

4 Modelling flow control problems under diverse operating conditions



[Ver: A3B2WIN8.07r/W-Standard] [22.10.2009–8:59pm] [1–21]

FIRST PROOFS (TIM)

Paper: TIM 347650 SAGE

3. Modelling approach

The first step of the modelling procedure is to record two-dimensional instantaneous
images, ie, snapshots, of the flow. The snapshots can be obtained either from actual

physical experiments using techniques such as particle image velocimetry (Raffel

et al., 1998), or from computer data recorded from CFD simulations of the Navier–

Stokes equations. Then a proper orthogonal decomposition (POD) of the flow is

obtained using procedures outlined in Holmes et al. (1996) and Sirovich (1987), which

results in the flow variable q being expressed as

qðx, tÞ �
XN

i¼1

aiðtÞ�iðxÞ ð6Þ

The vectors �i, i¼ 1, . . . , N, are called the POD modes and ai 2 R are termed the time

coefficients. The time coefficients are obtained by projecting the snapshots onto the

POD modes

aiðtÞ ¼ qðx, tÞ,�iðxÞ
� �

ð7Þ

Each POD mode �i has an associated eigenvalue �i that measures the amount of

kinetic energy captured by that mode. Thus, the total percentage energy of the

snapshots captured by the POD expansion (6) can be computed as

%E ¼ 100�

PN
i¼1 �iPM
i¼1 �i

ð8Þ

Having obtained a POD expansion of the flow as in (6), it is seen that the time

variation of the flow is dictated by the coefficients ai, since the vectors �i are constant

with respect to time. Thus the modelling task for the flow is reduced to fitting a

suitable dynamical model to the trajectories ai(t). For this purpose a state-space model

of the following form will be sought

�ðtkþ1Þ ¼ A�ðtkÞ þ B�ðtkÞ ð9Þ

yðtkÞ ¼ C�ðtkÞ þD�ðtkÞ ð10Þ

which is a discrete-time model, since the flow snapshots are available at discrete time
values tk 2 Rþ separated by a sampling period of Ts 2 Rþ s. Here, � 2 R

n is the state

vector, n 2 N is the degree of the system, � 2 R is the control input and y 2 R
N is the

output signal, which is the vector of time coefficients

yðtÞ ¼ aðtÞ ¼ a1ðtÞ a2ðtÞ . . . aNðtÞ½ �
T

ð11Þ

The matrices A, B, C and D defining the dynamical system (9)–(10) are obtained by

using the subspace system-identification techniques (Ljung, 1999). The input data for

identification is �k

� 	M

k¼1
and the output data is yk

� 	M

k¼1
, where yk¼ y(tk).

Kasnakoğlu et al. 5
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The model (9)–(10) produced by the steps above is a linear state-space model.
Linear models can represent the flow behaviour satisfactorily around a given
operating condition, but may fail to characterize the flow adequately if some flow
parameters, eg, density or viscosity, differ considerably from the design conditions. To
cope with this situation, numerous models of the form (9)–(10) are derived from
snapshot sets obtained at different values of the flow parameters across the expected
flow envelope. For simplicity, assume that a single flow parameter will be varying
during the operation, although the results can be generalized straightforwardly to
multiple varying parameters. Let � denote this parameter, and let � � R denote the
flow envelope in which the parameter varies, ie, � 2 �. Let �i 2 � for i¼ 1, . . ., p, where
p 2 N, be the values of the parameters at which the modelling process outlined above
will be carried out. The parameter values �i are termed breakpoints, and repeating the
modelling steps above for each breakpoint results in p linear state-space models

�ðtkþ1Þ ¼ Að�Þ�ðtkÞ þ Bð�Þ�ðtkÞ ð12Þ

yðtkÞ ¼ Cð�Þ�ðtkÞ þDð�Þ�ðtkÞ ð13Þ

for �¼ �1, . . ., �p. To obtain the system behaviour for the values of � that lie in between
the breakpoints, we utilize output blending (Hyde, 1995). In this method the linear
state-space models (12)–(13) for the breakpoints �i¼ �1, . . ., �p are run in parallel and
their outputs are interpolated according to the current value of the flow parameter �.
More specifically, if �i� � < �iþ1 then the blended system output is

yðtÞ ¼ ð1� �Þ yiðtÞ þ �yiþ1ðtÞ ð14Þ

where

0 � � ¼
� � �i

�iþ1 � �i
51 ð15Þ

and yi, yiþ1 denote the output of the state-space model corresponding to breakpoint �i

and �iþ1 respectively. A schematic illustration of the process is given in Figure 1. The
process illustrated in the figure can implemented in MATLAB by augmenting the
vector fields of all p state-space models and calling the appropriate ODE solver (eg,
ode23, ode45, ode15s, etc.) to obtain the state trajectories and outputs yi(t) for all the
models at once. The current value of the flow parameter � can then be used to
compute the blended output y(t) as given in (14).

4. Case study: dynamical modelling of a boundary controlled flow governed by
the two-dimensional Navier–Stokes Equations

In this example, consider the fluid flow over a two-dimensional square region
� ¼ ½0; 1� � ½0, 1� � R

2, where the fluid dynamics is governed by the Navier–Stokes
equations and the control input affects the system through the boundary conditions.

6 Modelling flow control problems under diverse operating conditions
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The flow parameter � of interest is the kinematic viscosity (v), which is ratio of
dynamic viscosity (�) to fluid density (q). The goal of this case study is to build a
dynamical model describing the flow, where the range of the flow parameter is
� ¼ ½0:000001, 1�m2=s; in other words, 0:000001 m2=s � v � 1 m2=s, or equivalently
1 cSt � v � 1000000 cSt. The selected kinematic viscosity range covers numerous
common fluids under various temperature conditions. The lower end of the range
corresponds to fluids where inertial forces are dominant and consequently the flow
characteristics are turbulent. The higher end of the range corresponds to fluids where
the viscous forces are dominant and hence the flow characteristics are laminar.
To construct the desired dynamical model, we carry out the steps outlined in Section 3
by employing the scientific computing software MATLAB. In particular, for solving
the Navier–Stokes PDEs, the MATLAB CFD solver Navier2D was used (Engwirda,
2005). Navier2D is a two-dimensional flow solver, which is adequate for the purposes
of the example considered here; however, one should keep in mind that this is only an
approximation, as the flows in real-life are three-dimensional. Navier2D is based on
direct numerical simulation (DNS) and uses a finite volume method (FVM) for
discretization. These choices are sufficient for the sample problem considered here;
however, for different and more complex flow configurations one might need to
employ turbulence models (eg, Reynolds-averaged Navier–Stokes (RANS) equations,
Large eddy simulation (LES) or vortex method) or an alternate model for
discretization (eg, finite element method (FEM) or finite difference method (FDM)).

To implement the subspace system identification methods, we make use of the
System Identification Toolbox built into MATLAB. After the dynamical model is at

System
for q1

System
for qi

System
for qi+1

System
for qn

q

Select

y1

yi

yi

yn

yi+1
yi+1

1
+

+ +

1 – λ

y

λ

λ = 

–

q – qi
q + 1– qi

Figure 1 Blending the outputs of multiple systems based on a
parameter �
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hand, we also demonstrate how this model can be used to realize a control task related

to the flow problem of interest, for which we employ functions from the Control

Systems Toolbox.
Let qðx, y, tÞ ¼ ½uðx, y, tÞ vðx, y, tÞ� 2 R

2 denote the flow velocity, where u and v are
components in the longitudinal and lateral directions. The flow is governed by the

Navier–Stokes PDEs where the initial conditions for the flow are

uðx, y, 0Þ ¼ vðx, y, 0Þ ¼ 0 ð16Þ

The boundary conditions are

uðx, 0, tÞ ¼ uðx, 1, tÞ ¼ 1 ð17Þ

vðx, 0, tÞ ¼ vðx, 1, tÞ ¼ 0 ð18Þ

uð0, y, tÞ ¼ 0,
@v

@x
ð0, y, tÞ ¼ 0 ð19Þ

uð1, y, tÞ ¼
0, y 2 ½0, 0:42Þ
�ðtÞ; y 2 ½0:42, 0:58�
0, y 2 ð0:58, 1�

8<
: ð20Þ

vð1, y, tÞ ¼ 0 ð21Þ

and � 2 R is the control input. This flow problem was proposed in our earlier works

(see for instance Kasnakoğlu et al., 2008) as a relatively simple yet challenging

benchmark problem to test modelling and control approaches for flow control

problems. The problem contains both Dirichlet- and Neumann-type boundary

conditions, which correspond to constant flowing, no-slip and stress-free walls

around the flow domain X. The control input � can induce changes to the system
through only a limited segment of the right boundary. The first step of the procedure

described in Section 3 is to simulate the flow configuration described above using

Navier2D. Several simulations were carried out under different inputs, including

zero-input, chirp signal, square wave, ramp function and white noise. Each simulation

was carried out with a time step of Ts¼ 0.0069 s for 1000 time steps on a 50� 50

uniform grid of the spatial domain. These simulations were repeated for 10 different

values of the operating point, ie, for 10 different values of the kinematic viscosity v.
The selected breakpoints are v1¼ 00000100, v2¼ 0.00001931, v3¼ 0.00037276,

v4¼ 0.00719686, v5¼ 0.07142950, v6¼ 0.21428650, v7¼ 0.37275937, v8¼ 0.57142900,

8 Modelling flow control problems under diverse operating conditions
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v9¼ 0.78571450 and v10¼ 1.00000000. There are no hard and fast rules about the
selection of these breakpoints in general, but for the problem at hand the breakpoints
are concentrated near the lower limit of H, given that the sensitivity of the flow
characteristics to viscosity are more pronounced at lower v values. For illustration,
a few snapshots obtained from the CFD simulations under no input and under chirp
signal input are shown in Figure 2, for selected values of the viscosity at the
breakpoints v1� v10 [only the longitudinal (u) components are shown as the sole
purpose of these figures is to give a pictorial idea about the flow behaviour]. In all
four figures, it can be seen that the flow satisfies the boundary conditions given in
(16)–(21), including a constant velocity flow on the top and bottom walls, stress free-
behaviour on the left wall, and flow induced by the actuation on the right wall. While
these same boundary conditions are satisfied for all cases, the behaviour inside the
flow domain X is significantly different for each viscosity value. Specifically, the flow
behaviour is significantly oscillatory and exhibits turbulent tendencies for low values
of v, whereas for high values of v, the flow characteristics are steadier and laminar. The
numerical instabilities within the CFD solver may also be a factor contributing to the
oscillatory and random-like behaviour at lower viscosity values.

The second step is obtaining the POD modes �i in terms of which the flow variable
q will be expanded, by applying the POD procedure to the flow snapshots. Examining
the eigenvalues corresponding to the POD modes it can be computed using (8) that
these POD modes capture about 96% of the energy contained in the snapshots and
hence it is acceptable to truncate the POD expansion (6) at N¼ 4. Once the POD modes
are obtained, the snapshots recorded for each breakpoint value vi are projected onto
the POD modes as in (7) to obtain the time coefficients ai. The vector (11) built from
these time coefficients constitutes the output data for system identification. The output
data is augmented with the input values to form the input–output data, and this data
is then randomly partitioned into two parts, where the first part constitutes the data
for estimation and the second part the data for validation. Applying subspace system
identification to the input–output estimation data yields a linear state-space model for
each viscosity value vi, resulting in a total of 10 linear dynamical models. The order of
each system was selected as n¼ 4, which was determined after experimenting with
different orders and evaluating the relative importance of the dimension of the state
vector by inspecting the singular values of the Hankel matrices. Figure 3 shows the
time coefficients ai obtained from the snapshots versus the outputs yi of the dynamical
models. Two forcing conditions are shown, namely, the unforced case (� ¼ 0), and the
case when the input is a chirp signal. It can be observed that the models produce
responses very close to the actual time coefficients. In fact, the responses are almost
identical to the time coefficients for the higher end of the viscosity spectrum. For lower
viscosity values, the model responses do not match the time coefficients perfectly;
however, they still capture the general trend satisfactorily. A difference of this sort
between low and high viscosity flow is to be expected since the flow characteristics
tend to be more turbulent for lower v values. An additional problem regarding lower

Kasnakoğlu et al. 9
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Figure 2 Snapshots of the longitudinal component of the flow
velocity, at selected breakpoint values of the flow parameter v,
under no input and chirp input forcing
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v values is that the mesh used for CFD simulations may be not be dense enough,
which in turn might cause numerical instabilities. As a result of these phenomena, the

time coefficient trajectories tend to exhibit oscillatory and random behaviour, which

are difficult to capture in the modelling process. To quantify the performances of the

2 4 6
–0.3

–0.2

–0.1

0

0.1
y c

(t
),

 a
(t

)
y c

(t
),

 a
(t

)
y c

(t
),

 a
(t

)
y c

(t
),

 a
(t

)

2 4 6
–2

–1

0

1

2

2 4 6
–0.3

–0.2

–0.1

0

0.1

2 4 6
–2

–1

0

1

2

2 4 6
–0.1

0

0.1

0.2

0.3

2 4 6
–4

–2

0

2

4

2 4 6
–0.2

0

0.2

0.4

0.6

2 4 6
–1

–0.5

0

0.5

1

2 4 6
–0.2

0

0.2

0.4

0.6

2 4 6
–1

–0.5

0

0.5

1

2 4 6
–0.2

0

0.2

0.4

0.6

2 4 6
–1

–0.5

0

0.5

1

2 4 6
–0.2

0

0.2

0.4

0.6

2 4 6
–1

–0.5

0

0.5

1

2 4 6
–0.2

0

0.2

0.4

0.6

2 4 6
–1

–0.5

0

0.5

1

2 4 6
–0.2

0

0.2

0.4

0.6

Time (s)
2 4 6

–1

–0.5

0

0.5

1

Time (s)
2 4 6

–0.2

0

0.2

0.4

0.6

Time (s)
2 4 6

–1

–0.5

0

0.5

1

Time (s)

y c
(t

),
 a

(t
)

ν=0.000019ν=0.000019ν=0.000001ν=0.000001 γ =Chirplnput γ =Chirplnputγ =Nolnputγ =Nolnput

ν=0.007197,ν=0.007197,ν=0.000373,ν=0.000373, γ =Chirplnput γ =Chirplnputγ =Nolnput γ =Nolnput

ν=0.214286,ν=0.214286,ν=0.071429,ν=0.071429, γ =Chirplnput γ =Chirplnputγ =Nolnput γ =Nolnput

ν=0.571429,ν=0.571429,ν=0.372759,ν=0.372759, γ =Chirplnput γ =Chirplnputγ =Nolnput γ =Nolnput

ν=1.000000,ν=1.000000,ν=0.785714,ν=0.785714, γ =Chirplnput γ =Chirplnputγ =Nolnput γ =Nolnput

Figure 3 Time coefficients a obtained from snapshots (dashed)
versus the outputs yc of the dynamical models (solid), for
breakpoint values of the flow parameter v. The colours blue,
green, red and cyan correspond to the first, second, third and
fourth elements of the vectors respectively
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dynamical models one can make use of the average percentage root mean squared

error: For a given breakpoint vi, the average percentage root mean square (%RMSE)

error is computed as

%RMSE ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN

XM
k¼1

XN

i¼1

aiðtkÞ � yiðtkÞ

aiðtkÞ

� �2

vuut ð22Þ

Though a single %RMSE value can be computed for the entire set of snapshots, for

comparison purposes it is helpful to compute separate %RMSE values for unforced

and forced operation. For these cases the values ai and yi in (22) are the time

coefficients and outputs for the particular case of interest, and M is the number of data
for that case. Table 1 shows the %RMSE values computed at the breakpoints for

unforced operation and also when the system is forced with a chirp signal input.

Examining the table one observes that for the unforced case there is good agreement

between the time coefficients and the outputs of the models for all 10 breakpoints, and
the error is less than 1% for all cases. For the forced case, the error is also acceptable

and is around 1–2% for the most part, except for the lower end of the viscosity range,

where it rises to about 16%. As explained earlier, such a rise in error value towards the

lower end of H is to be expected; for low v values the flow exhibits oscillatory
behaviour caused by turbulent flow characteristics, and the effect of numerical

instabilities as well as unmodelled/unsimulated dynamics (eg, because of a coarse

grid) become more apparent.
The subsequent step is to combine the 10 dynamical models so that the predictions of

the flow characteristics are obtained continuously over the flow envelope H. By

continuously, we mean the ability to model the flow for any v 2 �, where v is not

Table 1 Percentage root mean squared error between actual time coefficients and the
outputs of the dynamical models, for breakpoint values of v

v (m2/s) %RMSE
(no input)

%RMSE
(chirp input)

0.00000100 0.631659247 16.06740648
0.00001931 0.554085603 16.18678612
0.00037276 0.202137261 16.1782188
0.00719686 0.002742377 2.789811998
0.07142950 0.003737121 1.061357123
0.21428650 0.003268267 0.941987259
0.37275937 0.003302684 0.890139528
0.57142900 0.003097139 0.895443896
0.78571450 0.003098128 0.95728875
1.00000000 0.003162296 0.87916504

12 Modelling flow control problems under diverse operating conditions



[Ver: A3B2WIN8.07r/W-Standard] [22.10.2009–8:59pm] [1–21]

FIRST PROOFS (TIM)

Paper: TIM 347650 SAGE

necessarily equal to a breakpoint value vi. For this purpose, we make use of the output

blending technique mentioned in Section 3 (Figure 1). This step results in a dynamical

model describing the flow process for all values of the flow parameter of interest within

the desired range H. To evaluate its performance, additional CFD simulations are

carried out for several values of v between the breakpoints, and time coefficients are

obtained from the resulting snapshots. The non-breakpoint values of v used for eval-
uation are v01 ¼ 0:00000268, v02 ¼ 0:00000720, v03 ¼ 0:00005179, v04 ¼ 0:00013895; v05 ¼
0:00100000, v06 ¼ 0:00268270, v07 ¼ 0:01930698, v08 ¼ 0:05179475, v09 ¼ 0:13894955; v010 ¼

0:14285800; v011 ¼ 0:28571500; v012 ¼ 0:35714350; v013 ¼ 0:42857200; v014 ¼ 0:50000050;

v015 ¼ 0:64285750, v016 ¼ 0:71428600, v017 ¼ 0:85714300 and v018 ¼ 0:92857150. Figure 4

shows a comparison of the time coefficients for these v values with the results obtained

from output-blending, where it is seen that the trajectories are reasonably close to one

another. The %RMSE for each case is also tabulated in Table 2, which are also
acceptable. (Again, for low v values the %RMSE is higher because of the oscillatory

behaviour caused by turbulent flow characteristics, as well as numerical instabilities

and unmodelled/unsimulated dynamics.) In summary, it can be stated that the

proposed modelling procedure produces satisfactory results in representing the flow

process over the entire range of the flow parameter v.
As stated in the beginning, the main motivation for constructing a dynamical model

is to carry out a control design task for the flow process under consideration. For the

sake of example, let us presume that the task is to control the longitudinal velocity of

the centre point of the domain (xo, yo):¼ (0.5, 0.5). For controller design, we will follow

a similar approach to modelling, in the sense that we build individual controllers for
the linear state-space models obtained at the breakpoints, and then blend the

controller outputs based on the current value of the flow parameter. When applied to

the controller outputs, the blending procedure is usually termed input blending rather

than output blending, since the blended signal is the input to the flow process. Let us

denote the quantity to be controlled as yc and express it in terms of the POD expansion

in (6), which yields

ycðtÞ ¼ uðxo, yo, tÞ ¼
X4

i¼1

aiðtÞ�i,uðxo, yoÞ ¼: C0aðtÞ ð23Þ

where C0 is the 1� 4 matrix

C0 :¼ ½�1,uðxo, yoÞ �2,uðxo, yoÞ �3,uðxo, yoÞ �4,uðxo, yoÞ � ð24Þ

Recall that for a given breakpoint vi, a dynamical model of the form (9)–(10) has

already been obtained following the steps described earlier. Then from (10) and (23)

one obtains

yc ¼ C0a ¼ C0ðC� þD�Þ

¼ Cc� þDc�
ð25Þ

Kasnakoğlu et al. 13
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Figure 4 Time coefficients a obtained from snapshots (dashed)
versus the outputs yc of the dynamical models (solid), for non-
breakpoint values of the flow parameter v. The colours blue,
green, red and cyan correspond to the first, second, third and
fourth elements of the vectors respectively
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where Cc :¼ C0C and Dc :¼ C0D. Stacking the state dynamics (9) with the output yc to

be regulated yields

�ðtkþ1Þ ¼ A�ðtkÞ þ B�ðtkÞ ð26Þ

ycðtkÞ ¼ Cc�ðtkÞ þDc�ðtkÞ ð27Þ

which is a single-input single-output (SISO) system from � to yc. Denote by yref the

reference signal to be tracked by yc. To accomplish the desired tracking, design a

compensator K with state dynamics

	ðtkþ1Þ ¼ Ak	ðtkÞ þ BkeðtkÞ ð28Þ

�ðtkÞ ¼ Ck	ðtkÞ þDkeðtkÞ ð29Þ

where Ak, Bk, Ck and Dk are the state matrices of the controller, 	 is the controller state,

� is the input to the system and e¼ yref� yc is the tracking error. A selection of
standard and automatic design methods exist for obtaining K, including PID tuning

methods, internal model control (IMC) design techniques, LQG synthesis and

Table 2 Percentage root mean squared error between actual time coefficients and the
outputs of the dynamical models, for non-breakpoint values of v

v (m2/s) %RMSE
(no input)

%RMSE
(chirp input)

0.00000268 1.154424943 17.79804256
0.00000720 1.183815725 17.03198281
0.00005179 0.852570529 16.28663879
0.00013895 0.970341921 15.7536293
0.00100000 4.327768622 17.98535088
0.00268270 4.454212301 15.74610951
0.01930698 1.228373634 5.685199342
0.05179475 1.372493217 5.222336112
0.13894955 0.36887619 1.836132481
0.14285800 0.369076022 1.842522767
0.28571500 0.307725256 1.646235896
0.35714350 0.308298056 1.636625119
0.42857200 0.349282282 1.742876644
0.50000050 0.349598762 1.740751512
0.64285750 0.318717516 1.656126996
0.71428600 0.318849569 1.65020463
0.85714300 0.078611544 1.055233326
0.92857150 0.078628958 1.05628866

Kasnakoğlu et al. 15
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optimization-based design. Experimenting with numerous compensators using
various methods, it was seen that the most satisfactory results are obtained for
compensators built using IMC design methods (Chien and Fruehauf, 1990). Ten
compensators were designed for the 10 linear state-space models using IMC design
techniques; we shall denote by Ki the compensator designed for the linear state-space
model corresponding to breakpoint vi. A key design parameter for IMC is the desired
dominant closed-loop time constant (
), which has been selected as 
¼ 0.1 s, to achieve
a settling time less than 0.5 s. To evaluate the performance of the designed controllers,
closed-loop CFD simulations of the flow process were carried out at the breakpoints.
Figure 5 shows the trajectory of the point (xo, yo)¼ (0.5, 0.5) of interest when the
reference signal yref is the unit step signal. To make the situation more realistic,
disturbances were also added to the inputs and outputs of the system. The
disturbances applied are in the form of white noise signals with magnitude 0.1,
which is 10% of the reference signal. It is seen from Figure 5 that for all breakpoints vi,
the closed-loop system successfully tracks the unit step, and the settling time is less
than 0.5 s as desired. That is, despite the very different open-loop behaviours of the
flows at different viscosity values (Figure 2), the closed-loop responses can be
rendered to be quite similar to each other (Figure 5) thanks to a separate controller
design at each breakpoint.

The next step is to fuse the controllers Ki using the blending procedure, so that the
desired tracking can be achieved over the entire flow envelope H. If the current value
for the flow parameter is v, where vi � v5viþ1, then input signal � to be applied to the
flow process is constructed as

�ðtÞ ¼ ð1� �Þ�iðtÞ þ ��iþ1ðtÞ ð30Þ
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Figure 5 Closed-loop step response of the point (xo, yo):¼ (0.5, 0.5)
obtained from CFD simulations, for breakpoint values of the flow
parameter
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where

0 � � ¼
v� vi

viþ1 � vi
51 ð31Þ

and � i denotes to output of the ith IMC controller Ki. The blended controller was

applied to the flow process and CFD simulations were carried out at the non-

breakpoint values v01 � v018. Figure 6 shows the trajectory of the point (xo, yo)¼ (0.5, 0.5)

of interest. It is seen that closed-loop system settles to the reference value in less than

0.5 s for all cases, and successfully tracks the reference from thereafter.
As a more challenging test for the blended controller design, additional

experiments were performed for the case when the flow parameter v is time-varying.

For these simulations, the reference signal yref to be tracked is kept constant at 1 for

until about t¼ 1.0 s, after which it is switched to �1. As before, white-noise
disturbances of magnitude 0.1 were applied to the input and output. The snapshots

resulting from this closed-loop operation are shown in Figure 7. In addition, the time

trajectory of the point (xo, yo)¼ (0.5, 0.5) is of interest, together with the reference signal

yref, is shown in Figure 8. It can be observed from the figures that the closed-loop
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Figure 6 Closed-loop step response of the point (xo, yo):¼ (0.5, 0.5)
obtained from CFD simulations, for non-breakpoint values of the
flow parameter
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system accomplishes the desired tracking and keeps the velocity of the given point

close to the reference signal. The small oscillation about the reference signal is

tolerable and is related to input/output noises, in addition to the unmodelled

dynamics resulting from operation away from the breakpoints and representing an

infinite dimensional non-linear PDE system with a set of finite dimensional linear

state-space models.

5. Conclusions and future works

In this paper, a systematic dynamical modelling procedure for fluid flow control

problems is proposed. Snapshots of the flow process are obtained from experiments or

CFD simulations, and a POD expansion of the flow is computed. The time coefficients
of the expansion are merged with the input values to form the estimation data, and a

linear state-space system representing the time coefficients is obtained using subspace

system identification. The procedure is repeated for a number of operating points,

called breakpoints, which are characterized by one or more flow parameters of

interest. The dynamical models obtained at the breakpoints are then combined using

the output-blending technique. The result of the procedure is a dynamical model,
which can represent the flow process continuously within the flow envelope, ie,

within a desired range of the flow parameters. The modelling approach developed
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t¼ 1 s

18 Modelling flow control problems under diverse operating conditions



[Ver: A3B2WIN8.07r/W-Standard] [22.10.2009–8:59pm] [1–21]

FIRST PROOFS (TIM)

Paper: TIM 347650 SAGE

was seen to be successful on a flow control case study governed by the Navier–Stokes
equations, where kinematic viscosity is regarded as the control parameter.

The main contributions and novelties put forward by this work can be summarized
as follows: methodologically, the course of action differs from standard Galerkin
modelling in that once the POD modes are obtained from flow snapshots, the IS and
GP steps are replaced by subspace system-identification. Hence, no direct manipula-
tions, substitutions or approximations are carried out on the complicated Navier–
Stokes PDEs, which is a common source of numerical errors. An additional benefit is
that subspace system identification is much easier to implement than IS and GP,
because of readily available routines in commonly used scientific computing
packages, eg, MATLAB. It is also possible to enforce the stability of the system
resulting from subspace identification, which is not always the case for Galerkin
models. Another important contribution of the proposed approach is the ability to
model the flow process under different operating points, and in a continuous manner
within a given flow envelope. Another advantage of the proposed method is that it is
based on linear models, which is makes analysis and control design less complicated
compared to non-linear Galerkin models. Such an approach was shown to be feasible
and successful in the case study presented in Section 4.
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Figure 8 First (from top): Trajectory of the flow parameter v.
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Future research directions include employing alternative schemes for identification,
and applying the proposed technique to different flow control problems.

Acknowledgement
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