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Feedback flow control employing local dynamical modelling
with wavelets

Türker Nazmi Erbil and Coşku Kasnakoğlu*

Department of Electrical and Electronics Engineering, TOBB University of Economics
and Technology, Ankara, Turkey

(Received 25 February 2009; final version received 24 June 2009)

In this paper, we utilize wavelet transform to obtain dynamical models describing the
behaviour of fluid flow in a local spatial region of interest. First, snapshots of the flow are
obtained from experiments or from computational fluid dynamics (CFD) simulations of
the governing equations. A wavelet family and decomposition level is selected by
assessing the reconstruction success under the resulting inverse transform. The flow is
then expanded onto a set of basis vectors that are constructed from the wavelet function.
The wavelet coefficients associated with the basis vectors capture the time variation of the
flow within the spatial region covered by the support of the basis vectors. A dynamical
model is established for these coefficients by using subspace identification methods. The
approach developed is applied to a sample flow configuration on a square domain where
the input affects the system through the boundary conditions. It is observed that there is
good agreement between CFD simulation results and the predictions of the dynamical
model. A controller is designed based on the dynamical model and is seen to be
successful in regulating the velocity of a given point within the region of interest.

Keywords: flow control; regional dynamic modelling; wavelet transform

1. Introduction

The term fluid flow refers to the motion of liquids and gases, which is an important part of
everyday life. The air flow over the wings of an airplane, crude oil flow in a pipeline or water
flow around the body of a submarine are all examples of fluid flow. Thus, from a scientific and
technological point of view, modelling and understanding fluid flow is an issue of high
importance [1,2]. Among extensive research on the topic one can find studies on flow control
in aircrafts and airfoils [3,4], control of channel flows [5,6], control of turbulent boundary
layers [7], control of combustion instability [8], stabilization of bluff-body flow [9], control
of cylinder wakes [10,11], control of cavity flows [12–15] and optimal control of vortex
shedding [16,17].

The most common technique in the dynamical modelling of fluid flow is the proper
orthogonal decomposition (POD) method. In this approach, one obtains a set of modes
called PODmodes, which capture a sufficiently large amount of energy of the flow. The flow
is then expanded in terms of these modes, and this expansion is substituted into the partial
differential equations (PDEs) representing the flow, resulting in a set of ordinary differential
equations in the time coefficients of the modes [18–21]. Also worth mentioning are input
separation (IS) techniques, which are important extensions to POD [22–24]. These methods
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address the problem that the control input gets embedded into the system coefficients and
remedy the issue by producing stand-alone control terms in the dynamics. POD-based
methods have been used for the modelling and control of numerous flow applications,
including feedback control of cylinder wakes [10,11], control of cavity flows [12–15],
optimal control of vortex shedding [17] and the stabilization of the flow over obstacles [25].

Although the above-mentioned approaches do indeed result in finite-dimensional dyna-
mical models, it is still very difficult to perform analysis and design as these models are
nonlinear in nature. Another issue is that the PODmodes do not have a compact support, but
instead they are spread out to the entire flow domain. Hence the time coefficients associated
with the modes do not provide direct information regarding changes in a local spatial domain
of interest. In many cases one is concerned with the dynamical behaviour in a given local
region only, so it is of interest to build models whose states can directly be associated with a
given spatial region. In this paper, we utilize wavelet transform methods [26–29] to develop
such a modelling approach. The ideas in the paper are developed and are organized as
follows: Section 2 presents an overview of the wavelet transform and the Navier–Stokes
(NS) equations. Section 3 describes the main modelling approach, which is based on
obtaining spatially local basis modes using wavelet transform and using subspace identifica-
tion to construct a model capturing the dynamics of the time coefficients associated with
these modes. The proposed approach is illustrated with a flow control case study in Section
4, where the task is to regulate the velocity of a given point inside a square region in which
the flow is governed by the NS PDEs. It is first observed that the modes built from wavelet
transform can adequately represent the snapshots of the flow. Then the model capturing the
dynamics of the time coefficients for these modes is built, and it is seen to produce
trajectories sufficiently close to the actual trajectories associated with the snapshots. Next
a controller design is carried out using the dynamical system and applied to the actual
NS PDEs. It is seen that the controller is successful in achieving the desired regulation. The
paper ends with Section 5, which provides conclusions and future work ideas.

2. Background information

2.1. Wavelet transform, reconstruction, multilevel decomposition and thresholding

The wavelet transform is among the most commonly used methods in signal processing on
which a large numbers of resources and studies exist [26–29]. The wavelet transform is the
representation of a function by wavelets, where the wavelets are scaled and translated
versions of a finite-length fast-decaying oscillating waveform called the wavelet function.
Wavelet transforms are advantageous over traditional Fourier transforms for representing
functions that have discontinuities and sharp peaks and for accurately deconstructing and
reconstructing finite, non-periodic and/or non-stationary signals. The wavelet transform can
be expressed mathematically as the integration of scaled and shifted versions of a wavelet
function over time, that is,

C a; bð Þ ¼ 1ffiffiffi
a

p
ð1

�1
f tð Þψ� t � b

a

� �
dt (1)

where a 2 Rþ is the scale, b 2 Rþ is the translational value, C(a, b) are the wavelet
coefficients and ψ is the wavelet function that depends on the wavelet family being used
for the process. There are numerous families available for wavelet transform, including
biorthogonal nearly Coiflet (BNC), Coiflet–Daubechies–Feauveau, Daubechies, Haar,
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Mathieu, Legendre, Villasenor and Symlet. The reconstruction of the function f is obtained
by the summation of the coefficients C multiplied by the wavelet function ψ that is scaled
and shifted properly.

In numerical analysis and functional analysis problems, a sampled version of the contin-
uous wavelet transform described above is used more commonly, which is called the discrete
wavelet transform (DWT). This is also the method that we employ in this paper. In DWT, the
signal to be analysed is filtered into high-pass and low-pass filters with certain cutoff
frequencies, and the resulting signal is downsampled to obtain an equal number of data as
the original signal. The process is illustrated in Figure 1. The inverse transform for rebuilding
the signal from wavelet coefficients is also done in a similar but backwards fashion: After
upsampling, one applies reconstruction low-pass and high-pass filters to approximation and
detail coefficients, respectively, and combines the two to obtain the reconstructed signal.

The wavelet transform can also be applied to two-dimensional (2D) signals, by applying
filtering and downsampling first to the columns and then to the rows. This results in four
matrices containing the wavelet coefficients: one for the approximation coefficients and
three for the detail coefficients in horizontal, vertical and diagonal directions. This procedure
can be repeated on the approximation coefficients to obtain a second level of approximation
and detail coefficients, and then on the second-level approximation coefficients to obtain a
third level of coefficients, and so on. This process is termed the multilevel DWT and is
illustrated in Figure 2.

Also worth mentioning is the procedure of thresholding, which is a common post-
transform operation to apply to the wavelet coefficients. The thresholding process can be
described as follows:

Y ¼ X ; for Xj j > T
0; for Xj j � T

�
(2)

where X represents the detail coefficients, Y represents the thresholded detail coefficients and
T 2 Rþ represents the threshold value. The expression shown above states that if the
absolute value of a coefficient is greater than the threshold value, this coefficient is saved;
otherwise it is set to zero. It is quite common that one can pick a very small value for T and
still achieve an acceptable reconstruction from the thresholded coefficients. Since a small
value for T implies that most detail coefficients will be set to zero, one can store the
thresholded coefficients in a sparse matrix to save space, which is the basic idea behind
using wavelet transform for the compression of images and videos.

Figure 1. Discrete wavelet transform. The signal is split into approximation/detail coefficients by
applying decomposition low-pass/high-pass filters, followed by downsampling.

Mathematical and Computer Modelling of Dynamical Systems 3

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
Ü
B
T
A
K
 
E
K
U
A
L
]
 
A
t
:
 
1
4
:
3
0
 
2
6
 
O
c
t
o
b
e
r
 
2
0
0
9



2.2. Navier–Stokes (NS) equations

The NS PDEs are among the most useful sets of equations to describe the behaviour of fluid
flow. These equations arise from applying Newton’s second law to fluid motion, under the
assumption that the fluid stress is the sum of a diffusing viscous term plus a pressure term.
We shall consider the case of non-dimensional, incompressible NS equations

@q

@t
þ q � �ð Þq ¼ ��pþ 1

Re
Δq (3)

� � q ¼ 0 (4)

where Re 2 Rþ is the Reynolds number, p x; y; tð Þ 2 R is the pressure and
q x; y; tð Þ ¼ u x; y; tð Þ; v x; y; tð Þð Þ 2 R2 is the flow velocity with u and v being the components
in the streamwise and transverse directions. The interested reader is referred to Gad-el Hak
[1] for details regarding the NS PDEs.

3. Modelling approach

The regional modelling procedure proposed in this paper consists of the following steps:
The first step in the modelling process is to record 2D instantaneous images, that is

snapshots, of the flow. The snapshots can be obtained either from actual physical experiments
using techniques, such as particle image velocimetry [30], or from computer data that result
from computational fluid dynamics (CFD) simulations of the NS Equations (3) and (4).

The next step is the selection of a wavelet function to be used. The selection criterion is
that the wavelet function must be able to represent the flow snapshots with adequate
accuracy, in the sense that the reconstructed snapshots formed from the wavelet coefficients
are close to the original snapshots.

Figure 2. Multilevel 2D wavelet decomposition. The coefficients are labelled as ‘N XY’, where N is
the level, and X, Y denote the filtering operation for columns and rows, respectively. For instance, 2 LH
are the second-level wavelet coefficients obtained by applying low-pass filtering/downsampling to the
columns of 1 LL, and then applying high-pass filtering/downsampling to the rows.
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The third step is to determine the number of levels for the wavelet transform. A higher
number of levels will result in the approximation coefficients getting decomposed further
and will enable to flow snapshots to be represented with a fewer number of approximation
coefficients. However, if the number of approximation coefficients is too low, these coeffi-
cients will not be able to capture a sufficient amount of the energy in the snapshots, and
hence the quality of the representation will degrade. One must take these factors into account
when determining a suitable level of decomposition.

The next step is the construction of a set of basis vectors Φi(x, y) in terms of which the
flow variable q will be expressed as an expansion of the following form:

q x; y; tð Þ ¼
XN
t¼1

ai tð ÞΦi x; yð Þ (5)

where ai are the time coefficients and N 2 2R is the number of basis functions. EachΦi(x, y)
captures the contribution of a local spatial region of the flow process. The basis vectors are to
cover the spatial region of interest in both the streamwise and the transverse directions, and
have the following form:

Φi x; yð Þ ¼ Φi;u x; yð Þ
Φi;v x; yð Þ

� �
; i ¼ 1; . . . ;N : (6)

Here the streamwise component Φi,u is defined as

Φi;u x; yð Þ ¼ ¡i x; yð Þ; i ¼ 1; . . . N2
0; i ¼ N

2 þ 1; . . . ;N

(
(7)

and the transverse component Φi,v is defined as

Φi;v x; yð Þ ¼
0; i ¼ 1; . . . ; N2
¡
i�N

2
x; yð Þ; i ¼ N

2 þ 1; . . . ;N

(
(8)

where the functions ¡i : R
2 ! R for i ¼ 1; . . . ;N=2 are simply the wavelet function

shifted and scaled appropriately, which can be obtained by taking a coefficient matrix
that has a value of 1 at the coefficient of interest and is 0 elsewhere, and then inverse
transforming. Depending on the location of the wavelet coefficient, the oscillating part of
the function ¡i will be located in a different region of the spatial domain. One must
therefore pick a number of suitable ¡i functions whose support in R2 covers the spatial
area of interest. The value N is then twice this number, as seen from Equations (7) and (8).
If the wavelet function is orthogonal, then

Φi x; yð Þ;Φj x; yð Þ� 	 ¼ 0; for i�j (9)

and the wavelet coefficient ai(t) in Equation (5) becomes the projection of the flow snapshots
onto the basis function Φi. This allows for interpreting the basis vectors Φi as a set of
coordinate axes that create an N-dimensional subspace and the coefficients ai as the
components of the flow variable q on these axes.

Having obtained an expansion of the flow as in Equation (5), it is seen that the time
variation of the flow is dictated by the coefficients ai, since the vectors Φi are constant with
respect to time. Thus the modelling task for the flow is reduced to fitting a suitable dynamical
model to the trajectories ai(t). For this purpose a state-space model of the following form will
be sought:
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� t þ Tsð Þ ¼ A� tð Þ þ Bγ tð Þ; (10)

y tð Þ ¼ C� tð Þ þ Dγ tð Þ; (11)

which is a discrete-time model since the flow snapshots are available at discrete time values
separated by a sampling period of Ts 2 R seconds. Here, � 2 Rn is the state vector, n 2 N is
the degree of the system, γ 2 R is control input and y 2 RN is the output signal. The matrices
A, B, C and D determine the dynamical system and are to be obtained by constructing a
model of the form Equations (10) and (11) using system identification techniques. To
construct the data for system identification, various input signals, for example, sine waves,
ramp functions and chirp signals, are applied to the system at a sampling period of Ts, and the
resulting snapshots are recorded. Applying wavelet transform to these snapshots yields the
system output, which consists of the N wavelet coefficients representing the region of
interest, that is,

y tð Þ ¼ a tð Þ ¼ a1 tð Þ a2 tð Þ . . . aN tð Þ½ �T : (12)

From the input data γkf gMk¼1 and the output data ykf gMk¼1, subspace system identification
method (N4SID) is used for obtaining the A, B, C andDmatrices in Equations (10) and (11).
The main idea behind the subspace method is to first estimate the extended observability
matrix:

Or ¼
C
CA
..
.

CAr�1

2
664

3
775 (13)

for the system from input–output data by direct least-squares-like projection steps. In
particular, it is possible to show that an expression of the form

Yr tkð Þ ¼ Or � tkð Þ þ SrΓr tkð Þ þ V tð Þ (14)

can be obtained from Equations (10) and (11), where

Yr tkð Þ ¼
y tkð Þ
y tkþ1ð Þ

..

.

y tkþr�1ð Þ

2
6664

3
7775; Γr tkð Þ ¼

γ tkð Þ
γ tkþ1ð Þ

..

.

γ tkþr�1ð Þ

2
6664

3
7775 (15)

Sr ¼
D 0 � � � 0 0
CB D � � � 0 0
..
. ..

. . .
. ..

. ..
.

CAr�2B CAr�3B � � � CB D

2
664

3
775 (16)

and V(t) is the contribution because of output noise. The extended observability matrix Or

can then be estimated from Equation (14) by correlating both sides of the equality with
quantities that eliminate the term SrΓ(tk) and make the noise influence from V(t) disappear
asymptotically. OnceOr is known, it is possible to determineC and A by using the first block
row of Or and the shift property, respectively. Once A and C are at hand, B and D are
estimated using linear least squares on the following expression:

y tkð Þ ¼ C zI � Að Þ�1Bu tkð Þ þ Du tkð Þ (17)
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where Equation (17) is a representation of system Equations (10) and (11) in terms of the
time-shift operator z. Details of the subspace method for estimating state-space models can
be found in Ljung [31], Van Overschee [32] and Larimore [33].

Remark: Note that the system identification approach considered above differs from the
calibration techniques commonly used in flow modelling [34–37]. In the calibration
approaches, one first obtains a POD-based reduced order model (ROM) and then adjusts
its coefficients to minimize the error between the time coefficients and the states of the model
(or their derivatives). In the approach considered in this section, a linear discrete-time model
is obtained directly from the input–output data using general-purpose subspace system
identification tools (N4SID), without going through an intermediate ROM.

The dynamical regional modelling approach described in this section is best illustrated
by means of a case study, which will be presented in the Section 4.

4. Case study: dynamical modelling of a boundary-controlled flow governed by the
2D Navier–Stokes equations

In this example we consider the fluid flow over a 2D square regionΩ ¼ 0; 1½ � � 0; 1½ � � R2,
where the fluid dynamics is governed by the NS Equations (3) and (4) and the control input
affects the system through the boundary conditions. The main goal is to obtain a dynamical
model for a region of interest ΩR ¼ [0.3878, 0.5102] � [0.4694, 0.5918] located within Ω.
This choice ofΩR is without loss of any generality, and the proposed approach can be applied
in an identical manner to any other region of interest. After the dynamical model is at hand,
we will also illustrate how this model can be used to realize a control task within the region.
Let us first rewrite the NS Equations (3) and (4) in two dimensions as

@u

@t
þ @u

@x
uþ @u

@y
v ¼ � @p

@x
þ 1

Re

@2u

@x2
þ @2u

@y2

� �
(18)

@u

@t
þ @u

@x
uþ @u

@y
v ¼ � @p

@y
þ 1

Re

@2u

@x2
þ @2u

@y2

� �
(19)

@u

@x
þ @v

@y
¼ 0: (20)

Where q x; y; tð Þ ¼ u x; y; tð Þ v x; y; tð Þ½ � 2 R2 is the flow velocity and u and v are components
in the streamwise and transverse directions. We take the parameter Re to be Re ¼ 10, the
initial conditions as

u x; y; 0ð Þ ¼ v x; y; 0ð Þ ¼ 0 (21)

and the boundary conditions as

u x; 0; tð Þ ¼ u x; 1; tð Þ ¼ 1; (22)

v x; 0; tð Þ ¼ v x; 1; tð Þ ¼ 0; (23)

u 0; y; tð Þ ¼ 0; y 2 0; 0:0918½ Þ¨ 0:1735; 0:8265ð Þ 0:9082; 1ð �; (24)

@p

@x
0; y; tð Þ ¼ 0; y 2 0:0918; 0:1735½ �¨ 0:8265; 0:9082½ �; (25)
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@v

@x
0; y; tð Þ ¼ 0; (26)

u 1; y; tð Þ ¼
0; y 2 0; 0:4184½ Þ
γ tð Þ; y 2 0:4184; 0:5816½ Þ
0; y 2 0:5816; 1ð �;

8<
: (27)

v 1; y; tð Þ ¼ 0; (28)

where γ 2 R is the control input. This example was chosen because it is relatively simple to
implement, but at the same time it contains challenges for modelling and control: the
problem contains a mixture of Dirichlet- and Neumann-type boundary conditions
(corresponding to constant flowing, no-slip, stress-free and outflow-at-fixed-pressure-type
boundaries) and the control input γ can induce changes to the system through only a limited
segment of the right-hand-side boundary.

As the first step of the procedure described in Section 3, the NS equations above were
simulated using Navier2d, an NS CFD solver for MATLAB [38]. Several simulations were
carried out under different inputs, including zero-input, chirp signal, square wave, ramp
function and white noise. Each simulation was carried out with a time step of Ts ¼ 0.0014
seconds for 1000 time steps on a 50� 50 uniform grid of the spatial domain. A chirp signal
input is shown in Figure 3, and few snapshots obtained from the CFD simulation with this
input are shown in Figures 4 and 5.

Next a wavelet decomposition of the snapshots was performed at various levels using
different wavelet functions with the help of MATLAB Wavelet Toolbox. Evaluating these
decompositions, we have decided to use a two-level decomposition using the Daubechies
4 wavelet (db4) for the rest of the modelling procedure. This wavelet function is asymmetric
with a near-random structure, is orthogonal, produces exact reconstruction, has a finite
support area, and the highest number of vanishing moments for a given support width.
These properties make the Daubechies wavelet a suitable candidate for representing snap-
shots taken from fluid flow processes. In addition the availability of fast and efficient

0 0.2 0.4 0.6 0.8 1 1.2
–1.5

–1

–0.5

0

0.5

1

1.5

time (seconds)

γ(
t)

Figure 3. Chirp signal excitation used to obtain the flow snapshots in Figures 4 and 5.
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Figure 4. u-Component of the flow snapshots obtained under the chirp excitation shown in Figure 3.

t = 0.003

1

0.5

0
0 0.5 1

t = 0.522
1

0.5

0
0 0.5 1

t = 0.696
1

0.5

0
0 0.5 1

t = 0.868
1

0.5

0
0 0.5 1

t = 1.041
1

0.5

0
0 0.5 1

t = 1.215
1

0.5

0
0 0.5 1

t =1.388
1

0.5

0
0 0.5 1

t = 0.175

1

0.5

0
0 0.5 1

t = 0.348

1

0.5

0
0 0.5 1

Figure 5. v-Component of the flow snapshots obtained under the chirp excitation shown in Figure 3.
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methods for obtaining DWT and inverse DWT with the Daubechies wavelet makes it
possible to process a high number of snapshots in a short time. Figure 6 shows the
u-component of a sample snapshot together with its two-level decomposition using the
Daubechies wavelet. Also shown in the figure is the result of applying thresholding to the
wavelet coefficients. Different values for the threshold T were tested, and it was observed
that under the selected level and wavelet function, the thresholded coefficients produce good
reconstructions, even for very small values of T. In fact, the reconstruction is satisfactory
even for T ¼ 0, which is the case shown in the figure. This implies that even if all the detail
coefficients are omitted, the approximation coefficients are adequate to reconstruct the
snapshot. The results for the v-component of the snapshot were equally satisfactory and so
were the results for the other 999 snapshots.

As an additional justification for choosing the db4 wavelet and a two-level decomposition,
we have applied the same operations of transforming, thresholding and reconstruction using
other compactly supported orthogonal wavelets and decomposition levels. Thewavelets tested
are Coiflet (coif) 1, 2, 3, 4, 5; Daubechies (db) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10; and Symlet (sym) 2, 3,
4, 5, 6, 7, 8; and the decomposition levels tested are 1, 2, 3 and 4. The numbers next to the
wavelet name indicate the order of the wavelet, which determines certain characteristics such
as the support width, the filter length and the number of vanishing moments. For illustration

Figure 6. Original snapshot (top left), wavelet coefficients resulting from two-level decomposition
using Daubechies 4 wavelet (bottom left), thresholded wavelet coefficients (bottom right), snapshot
reconstructed from thresholded coefficients (top right).
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purposes, the coefficients (i.e. impulse responses) of the decomposition low-pass and high-
pass filters for the wavelets utilized are shown in Figures 7 and 8. The reader interested in full
details of these wavelets is referred to Daubechies [26].1 Tables 1 and 2 show various metrics
to evaluate the performance of the wavelet functions and decomposition levels. The columns
denote the name of the wavelet, decomposition level, number of coefficients after thresholding
out the details, average percent energy over all snapshots of the energy captured in the
u-direction, average percent energy in the v-direction, average mean squared error (MSE) in
the u-direction and average MSE in the v-direction, respectively. Recall that the desirable
result is to have a good reconstruction (i.e. high percent energy and low MSE) with a small
number of approximation coefficients. Hence we classify the result of each metric into three
classes and mark the cells of the tables with symbols to serve as visual aids: [ denotes a
desirable value, ! denotes a value that is borderline tolerable and • denotes an unacceptable
value. For the number of approximation coefficients we set the class boundaries as 300 and
600, for energy percentage we set the boundaries as 93 and 97% and for MSE we set the
boundaries as 0.1 and 0.2. Observing the tables, one can see that the values for the two-level
wavelet decomposition with the db4 wavelet (shown highlighted in Table 1) are within desired
limits for all metrics. The performances of coif1, db2, db5, db6, db7, db8, sym5, sym6, sym7
and sym8 wavelets with two-level decomposition are also acceptable but not as good as those
of the two-level db4 decomposition.

Once the wavelet type and the level of decomposition are determined, it is possible to
construct the basis vectorsΦi. To cover the domain of interest ΩR, it turns out that one needs
to use four vectors per direction, making a total of eight basis vectors, which can be defined
as in Equations (6) and (8). The functions γi for i ¼ 1,. . .,4 are shown in Figure 9, where the
region of interest ΩR is contained within the support of these functions.

Figure 7. Decomposition low-pass filters (L) for different wavelet functions used.
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Figure 8. Decomposition high-pass filters (H) for different wavelet functions used.

Table 1. Performance in reconstructing flow snapshots for different wavelet functions and levels of
decomposition.

Name Level #Coefs Energy (U) Energy (V) MSE (U) MSE (V)

sym8 1 • 1024 [ 99.0023563 [ 99.00235625 [ 0.02579 [ 0.025794
coif1 2 [ 256 ! 96.2290678 ! 96.22906781 ! 0.05945 ! 0.059446
coif2 2 ! 400 ! 93.6503965 ! 93.65039646 ! 0.05605 ! 0.056054
coif3 2 • 625 ! 95.6123898 ! 95.61238981 [ 0.04772 [ 0.047715
coif4 2 • 841 ! 96.2467795 ! 96.24677947 [ 0.04742 [ 0.047421
coif5 2 • 1156 [ 97.0655349 [ 97.06553487 [ 0.04652 [ 0.046525
db1 2 [ 169 ! 94.3143386 ! 94.31433858 ! 0.09489 ! 0.094891
db2 2 [ 196 ! 96.3309065 ! 96.33090651 ! 0.05446 ! 0.054457
db3 2 [ 256 ! 95.7813833 ! 95.78138326 [ 0.04933 [ 0.049332
db4 2 [ 289 [ 97.1604309 [ 97.16043094 [ 0.04842 [ 0.048418
db5 2 ! 361 ! 96.0196462 ! 96.01964617 ! 0.05994 ! 0.05994
db6 2 ! 400 [ 98.3429988 [ 98.34299883 [ 0.04055 [ 0.040552
db7 2 ! 484 [ 98.2234596 [ 98.22345962 [ 0.0415 [ 0.041497
db8 2 ! 529 [ 97.6434158 [ 97.64341578 ! 0.05399 ! 0.053988
db9 2 • 625 [ 98.2710506 [ 98.27105062 [ 0.04474 [ 0.044737
db10 2 • 676 [ 97.5612652 [ 97.56126522 [ 0.04269 [ 0.042694
sym2 2 [ 196 ! 96.3309065 ! 96.33090651 ! 0.05446 ! 0.054457
sym3 2 [ 256 ! 95.7813833 ! 95.78138326 [ 0.04933 [ 0.049332
sym4 2 [ 289 • 92.9023109 • 92.90231093 ! 0.06068 ! 0.060682
sym5 2 ! 361 ! 93.1454346 ! 93.14543458 ! 0.05686 ! 0.056865
sym6 2 ! 400 ! 93.4253015 ! 93.42530154 ! 0.06135 ! 0.061347
sym7 2 ! 484 ! 94.0364659 ! 94.03646592 ! 0.05543 ! 0.055425
sym8 2 ! 529 ! 94.3909896 ! 94.39098957 [ 0.0459 [ 0.045901
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At this point it will be helpful to take a digression and present a comparison with the
basis vectors that would be obtained using the POD method [18–21], which is the most
common approach used in the literature for fluid flow modelling. Recall from Equation (7)
that Φi,u ¼ γi for i ¼ 1,. . .,4 and note from Figure 9 that the support of each γi is a compact
spatial region. Hence the coefficient ai provides time information regarding this compact
spatial region only. If the basis vectors had been obtained using POD (e.g. as it was done in

Table 2. Performance in reconstructing flow snapshots for different wavelet functions and levels of
decomposition (continued).

Name Level #Coefs Energy (U) Energy (V) MSE (U) MSE (V)

coif1 3 [ 100 ! 93.061951 ! 93.06195097 ! 0.08709 ! 0.087092
coif2 3 [ 225 • 83.1642388 • 83.1642388 • 0.10508 • 0.105079
coif3 3 ! 441 • 79.8074672 • 79.80746719 • 0.11197 • 0.11197
coif4 3 • 676 • 83.9565327 • 83.95653271 • 0.117 • 0.116996
coif5 3 • 961 • 89.9811197 • 89.98111972 ! 0.09655 ! 0.096546
db1 3 [ 49 • 88.0438509 • 88.04385093 • 0.1613 • 0.161305
db2 3 [ 64 • 92.1584426 • 92.1584426 ! 0.09112 ! 0.09112
db3 3 [ 100 ! 93.1415122 ! 93.14151223 ! 0.09269 ! 0.092691
db4 3 [ 144 • 84.5527122 • 84.55271219 ! 0.09891 ! 0.098912
db5 3 [ 196 • 87.6134052 • 87.61340515 • 0.10896 • 0.108965
db6 3 [ 225 ! 93.2901932 ! 93.29019319 ! 0.06912 ! 0.069116
db7 3 [ 289 • 90.8154361 • 90.81543614 • 0.10576 • 0.105764
db8 3 ! 361 ! 95.4861172 ! 95.48611721 ! 0.06996 ! 0.069962
db9 3 ! 441 • 92.3276191 • 92.32761906 ! 0.0939 ! 0.0939
db10 3 ! 484 ! 94.3985082 ! 94.39850818 ! 0.08374 ! 0.083738
sym2 3 [ 64 • 92.1584426 • 92.1584426 ! 0.09112 ! 0.09112
sym3 3 [ 100 ! 93.1415122 ! 93.14151223 ! 0.09269 ! 0.092691
sym4 3 [ 144 ! 93.463259 ! 93.46325901 ! 0.09018 ! 0.090178
sym5 3 [ 196 • 83.5776873 • 83.57768732 ! 0.08246 ! 0.082458
sym6 3 [ 225 • 78.0425283 • 78.04252827 • 0.12285 • 0.122845
sym7 3 [ 289 • 77.4950346 • 77.49503457 ! 0.09273 ! 0.09273
sym8 3 ! 361 • 74.4244992 • 74.42449923 • 0.12285 • 0.122847
coif1 4 [ 49 • 90.0126135 • 90.01261346 • 0.14948 • 0.149485
coif2 4 [ 169 • 86.5875342 • 86.58753422 • 0.16425 • 0.164251
coif3 4 ! 361 • 63.4987778 • 63.4987778 • 0.19879 • 0.198786
coif4 4 ! 576 • 55.9462443 • 55.94624432 • 0.15478 • 0.154776
coif5 4 • 900 • 64.7796876 • 64.77968763 • 0.19514 • 0.l95143
db1 4 [ 16 • 80.2178489 • 80.21784894 • 0.26108 • 0.261078
db2 4 [ 25 • 85.2158431 • 85.2158431 • 0.16762 • 0.167617
db3 4 [ 49 • 91.525582 • 91.52558201 • 0.14782 • 0.147821
db4 4 [ 81 • 86.9190587 • 86.9190587 • 0.15327 • 0.153271
db5 4 [ 121 • 84.7852631 • 84.78526308 • 0.13724 • 0.137236
db6 4 [ 169 • 75.2976566 • 75.29765657 • 0.17034 • 0.170345
db7 4 [ 225 • 69.3504698 • 69.35046981 • 0.17272 • 0.172719
db8 4 [ 289 • 60.667004 • 60.667004 • 0.15913 • 0.159134
db9 4 ! 361 • 69.183353 • 69.18335297 • 0.19911 • 0.199112
db10 4 ! 400 • 77.3505764 • 77.35057637 • 0.16699 • 0.166987
sym2 4 [ 25 • 85.2158431 • 85.2158431 • 0.16762 • 0.167617
sym3 4 [ 49 • 91.525582 • 91.52558201 • 0.14782 • 0.147821
sym4 4 [ 81 ! 93.0473145 ! 93.0473145 • 0.13496 • 0.134957
sym5 4 [ 121 • 87.6403668 • 87.64036679 • 0.13749 • 0.137493
sym6 4 [ 169 • 88.3161985 • 88.31619853 • 0.15165 • 0.151654
sym7 4 [ 225 • 77.0244315 • 77.62443152 • 0.16308 • 0.163077
sym8 4 [ 289 • 67.6138562 • 67.61385625 • 0.17221 • 0.172209
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Kasnakoglu [24]), then Φi,u for i ¼ 1,. . .,4 would be of the form shown in Figure 10. Note
that the support of each Φi,u is spread out to the entire flow domain. Hence the time
variation of coefficient ai implies a change in the whole flow domain, and it is not possible
to link a given coefficient ai with a particular region of the flow domain. These arguments
apply for Φi,v as well. This is an important shortcoming that makes POD unsuitable for
building regional dynamical models and one of the major reasons for constructing the
wavelet-based approach in this paper.

Having obtained the basis vectors Φi, it is possible to expand the flow as

q x; y; tð Þ ¼
X8
i¼1

ai tð ÞΦi x; yð Þ; (29)

where ai are the approximation coefficients. The step after obtaining the basis functionsΦi is
the generation of input–output data for the identification of a state-space dynamical model.
Recall that the system output for identification purposes is

y tð Þ ¼ a tð Þ ¼ a1 tð Þ a2 tð Þ . . . a8 tð Þ½ �T ; (30)

which can be obtained by wavelet transforming the snapshots of the system under various
test inputs and recording the coefficients of interest. The output data resulting from the
zero-input case and the chirp signal case are shown in Figure 11. Output data under other
input trajectories including square waves, ramp functions and white noise signals have
also been obtained and recorded. We use these input–output data to obtain a dynamical
system of the form Equations (10) and (11) using subspace system identification methods
(N4SID) available through the MATLAB System Identification Toolbox. For this purpose
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Figure 9. The functions ¡if g41 for constructing the basis vectors Φif g81.
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we split the first half of the data for estimation, whereas the second half is reserved for
validation. Subsequent trials show that a satisfactory fit to the data can be obtained for an
eight-order model, whose response under zero input and under chirp signal input is shown
in Figure 12. Comparing with Figure 11, one can see that the responses are very close to
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Figure 10. u-Components of the basis vectors Φif g41 obtained by POD.
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Figure 11. Coefficients obtained from snapshots under chirp excitation.
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each other. The results were similar for other inputs tested as well; thus, one can state that
the model constructed is satisfactory in representing dynamics of the spatial region ΩR of
interest.

Undoubtedly, the main purpose for building a dynamical model for the region of interest
ΩR is to carry out a control design task within the region. Let us assume, for the sake of
illustration, that the control goal is to regulate the streamwise velocity of the point
xc; ycð Þ :¼ 0:5; 0:5ð Þ 2 ΩR. Let us denote this quantity to be regulated as y2, which can be
written from Equation (29) as

y2 tð Þ ¼ u xc; yc; tð Þ ¼
X8
i¼1

ai tð ÞΦi;u xc; ycð Þ ¼: C0a tð Þ; (31)

where C0 is the 1 � 8 matrix

C0 :¼ Φ1;u xc; ycð Þ Φ2;u xc; ycð Þ � � �Φ8;u xc; ycð Þ
 �
: (32)

Then from Equations (30) and (11)

y2 ¼ C0a ¼ C0 C� þ Dγð Þ ¼ C0C� þ C0Dγ ¼ C2� þ D2γ ð33Þ
where C2 :¼ C0C andD2 :¼ C0D. Then, augmenting the state dynamics (10) with the output
to be regulated we obtain

� t þ Tsð Þ ¼ A� tð Þ þ Bγ tð Þ (34)

y2 tð Þ ¼ C2� tð Þ þ D2γ tð Þ; (35)

which is a single-input single-output system from γ to y2. Let yref denote the reference signal
to be tracked by y2. To achieve the desired tracking one may design a compensator K with
transfer function
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Figure 12. Coefficients obtained from the dynamical model under chirp excitation.
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K zð Þ :¼ Γ zð Þ
E zð Þ (36)

where Γ(z) is the z-transform of γ(t) and E(z) is the z-transform of the tracking error
e tð Þ :¼ yref tð Þ � y2 tð Þ. A variety of standard and automated design methods exist for
obtaining K(z), including proportional integral derivative (PID) tuning techniques, internal
model control (IMC) design methods, linear quadratic Gaussian (LQG) synthesis and
optimization-based design. For the problem at hand, numerous compensators of different
orders were designed using these methods with the help of MATLAB Control Systems
Toolbox. The best results were obtained for the following third-order compensator built
using IMC design methods [39,40]

K zð Þ ¼ 0:1194z3 � 0:1159z2 � 0:1193zþ 0:116

z3 � 2:968z2 þ 2:936z� 0:9681
: (37)

This compensator was applied to the flow problem described by (18)–(28) and CFD
simulations were carried out. For the simulations, the reference signal yref was kept
constant at 0.5 for until about t ¼ 0.7 seconds, after which it was switched to -0.5. To
make the situation more challenging and realistic, we also added disturbances to the input
and the output of the system. The disturbances applied were in the form of white noise
signals with magnitude 0.05, which is 10% of the reference signal. The snapshots resulting
from closed-loop operation are shown in Figures 13 and 14, and the trajectory of the point
(xc, yc)¼ (0.5, 0.5) of interest, together with the reference signal yref, is shown in Figure 15.
It can be observed from the figures that the closed-loop system formed with the controller
(37) is successful in accomplishing the desired tracking and keeping the velocity of the
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Figure 13. Flow snapshots of the system under closed-loop operation (u-component).
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Figure 14. Flow snapshots of the system under closed-loop operation (v-component).
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Figure 15. Streamwise velocity of the point (xc, yc) under closed-loop operation, and the reference
signal yref to be tracked.
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given point close to the reference signal. The minor oscillation about the reference signal is
acceptable and is attributable to input and output noises, as well as the unmodelled
dynamics resulting from representing an infinite-dimensional nonlinear PDE system
with a finite-dimensional linear model.

In summary it can be stated that regional dynamical model built using the approach
suggested in the paper represents the flow process adequately, and a control design carried
out utilizing this model produces satisfactory results when applied to the complex PDE
system governing the flow dynamics.

5. Conclusions and future works

In this study, a novel method for regional dynamical modelling of flow control problems
using wavelet transform is proposed. First snapshots of the flow are collected, from where
the wavelet family and the decomposition level to be used are determined. Next a set of basis
vectors whose support cover the region of interest are constructed from the wavelet function.
The flow snapshots are expanded in terms of these basis vectors, where the time variation is
determined from the wavelet coefficients. Defining these coefficients as the system output,
numerous input signals are applied to the system to construct a sufficient number of input–
output data. Subspace identification methods are used to build a discrete-time state space
model that best represents the data. The approach developed is illustrated on a sample flow
control problem governed by the NS PDEs, where the input affects the system through the
boundary conditions. A dynamical model for the given region of interest is built using the
techniques proposed in the paper, and it is shown that it adequately represents the flow
snapshots obtained from CFD simulations. Utilizing this model, a compensator is designed
to regulate the streamwise velocity of a point within the region. It is seen through CFD
simulations that the closed-loop system satisfactorily tracks a given reference in the presence
of input and output noise signals.

The main contribution of this work is to present a systematic method to construct
dynamical models representing a local spatial region of interest for flow control problems.
Currently there exist other approaches in the literature for dynamical modelling of flow
processes, the most common of which are the POD-based methods. These approaches do
produce dynamical models; however, it is hard to utilize these models in analysis and control
design since the models resulting are nonlinear in nature. Another issue associated with these
models is that the basis vectors are spread out to the entire flow domain; hence one cannot
associate the time coefficients of these vectors with the dynamics of a specific region of
interest. The approach suggested in this paper remedies both of these problems and therefore is
of significance for flow control problems where linear and spatially local models are sought.

Future research directions include employing different identification schemes and appli-
cation of the techniques to different flow control problems.
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Note
1. See Chapter 6 for Daubechies wavelets and Chapter 8 for Symlets and Coiflets.
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