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First-principle-based models of the dynamics of flow systems are often of limited use for model-based control

design, not only because of their nonlinear and infinite-dimensional nature, but also because the control input is

generally specified as a boundary condition. Proper orthogonal decomposition and Galerkin projection are among

themost effective and commonly usedmethods to obtain reduced-ordermodels of flow dynamics. However, the final

form of these models may not account for the presence of a forcing or control input. From a control design

perspective, it is desirable to obtain a reduced-order model in which the control input appears explicitly in the

dynamic equations. In this paper, two methods for control input separation are introduced and comparatively

evaluated in experimentally based reduced-order modeling of cavity flow, both in their ability to reconstruct the

forced flowfield and to provide models suitable for feedback control design. The proposed methods, namely,

1) actuated proper orthogonal decomposition expansion and 2) L2 optimization, extend the baseline flow model

through the use of innovation vectors, which capture the deviation of the actuated flow from the baseline space. The

new methods address some of the issues associated with the subdomain separation technique employed in our

previous works. Linear-quadratic regulator controllers, built using models obtained from the new methods, have

been tested on a cavity flow experiment. Although the new models perform satisfactorily and comparably to our

previous models in terms of suppression of cavity tones, they offer a substantial advantage in terms of the required

input power to achieve a similar or better performance.

I. Introduction

I T IS typical in flow control problems for the control input to be
applied from the physical boundaries of the system.

Consequently, when the flow system under investigation is modeled
by partial differential equations, the control input appears as a
boundary condition, and the resulting control method is usually
termed boundary control [1]. Among countless examples of
boundary control applied to many different types of dynamic
equations, one can find studies in the field of flow control in Gad-el-
Hak [2], Aamo andKrstic [3],King [4], and references therein.As for
reduced-order modeling for flow control purposes, various
techniques have been proposed, ranging from system identification
based on experimental data [5–8] to models derived from flow
physics [9–13], to cite just a few. Many of these techniques share a
common core methodology: starting from the infinite-dimensional
governing equations, an optimal set of basis vectors that minimizes
the neglected energy in the model is built from flowfield data
(“snapshots”) obtained from numerical simulations or experimental
data. The most commonmethod for obtaining this set of spatial basis
functions is the proper orthogonal decomposition (POD) method
[14], which decomposes the spatiotemporal evolution of the
flowfield into spatial modes and their corresponding modal
amplitude. To derive the temporal evolution of the coefficients of the

POD expansion, the governing equations are projected onto the
space spanned by these bases, a procedure called Galerkin projection
(GP), which yields a system of ordinary differential equations that
approximates the original dynamics in an energy-optimal sense. A
reduced-order model obtained in this fashion is called a Galerkin
model (GM) and the methodologies used to obtain such model from
the original Navier–Stokes equations are termed model reduction.
The POD/GP method is a very common approach to simplify the
governing equation from a nonlinear system of functional
differential equations to a set of ordinary differential equations that
are simpler to manage. This technique has been applied extensively
to several flow configurations to obtain reduced-order models, by
capturing the evolution of dominant features of the flow such as
large-scale structures, which can be used to study the dynamic
behavior of the flow [8,12,15]. In recent years, this procedure has
been use to develop models amenable for control design purposes
[16–20].

Control input separation (or simply input separation) is a method
that transforms boundary control to a form that is more useful for
control design. The input separation process takes place during
model reduction and aims at rendering the presence of the control
input explicit in the model. This is the form that is most common
when dealing with dynamic systems models for feedback control,
and to which the standard tools of control theory can be applied. The
methods that have been explored in the literature include techniques
such as lifting [21], weak formulation of the Navier–Stokes
equations [22,23], balanced truncation [24], and adjoint equations
[25]. In the context of POD/GP modeling, Gillies [16] proposed the
use of a neural network to obtain an empirical prediction of the effect
of external forcing on the temporal evolution of the modal
amplitudes of a POD expansion, a technique later adopted and
refined by Cohen et al. [26]. For the same purpose, Cohen et al. [27]
and Siegel et al. [19] originally employed linear stochastic estimation
methods [28]. Noack et al. [12,29] proposed the use of a “shift mode”
to account for the transient behavior in reduced-order models of
cylinder wakes, and of “actuationmodes” (similar to those employed
in our study) to account for the actuation.

Control of the flow over a shallow cavity is a benchmark example
of boundary flow control that is of great interest from a
methodological perspective and in applications alike. This flow is
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characterized by a strong coupling between flow dynamics and flow
generated acoustics that produces a self-sustained resonance (see
Fig. 1), which is known to cause, among other problems, structural
fatigue in aircraft weapons bays. These characteristics make the
cavity flow problem an ideal case study for the development of
methodologies for closed-loop flow control of general applicability
to other flow configurations. As a result, this problem has been
studied extensively in the literature [20,30,31]. The cavity flow
control problem has been the main focus of the flow control group at
the Gas Dynamics and Turbulence Laboratory (GDTL) at The Ohio
State University (OSU) over the last few years, with significant effort
devoted to the development of model-based feedback control
[20,32,33]. In particular, the POD/GP approach to control-oriented
reduced-order modeling has been explored in Samimy et al. [20] and
Caraballo et al. [34], where the control input wasmade explicit in the
Galerkin model bymeans of subdomain separation methods [35,36].

Even though our focus has been directed to cavity flows, our goal
has been to develop methodologies that can be applied to the control
of other flow configurations. Having already obtained controllers
that work successfully in experiments, the group is currentlyworking
on improving the design and establishing mathematical and
theoretical foundations for the key components of the closed-loop
system. In an attempt to take a step further in this direction, it has been
found that, among the major elements in the design and
implementation of a feedback controller, control input separation
is a key issue that needs to be rethought and redesigned. Although the
aforementioned method for input separation provides a means to
obtain the input as an explicit term, there are major issues associated
with it, especially from a theoretical point of view, and much room
for improvement. First of all, the separation is performed at the level
of the Galerkin projection after the generation of a POD basis from
flow images, which include snapshots of baseline flow, actuated
flow, or combinations of the two. Although the inclusion of
snapshots of actuated flow is required to process data for
identification that capture the effect of external forcing, it
nevertheless creates a bias in the model, which limits its ability to
reproduce the unforced baseline case when the input is set to zero.
Similarly, the resulting reduced-order model is not capable of
reconstructing correctly the individual forced flowswhen the control
input term was included. This is somehow expected, as the POD
basis obtainedwith this approach tends to capture the evolution of the
forcing input itself rather than the effects it produces on theflowfield,
because the generation of the POD basis can not distinguish between
the two. For the same reason, themodel is not capable of representing
flow conditions for inputs which are different from the ones used to
generate the snapshots used to build themodel. This limitation is also
related to the fundamental and long-standing issue related to the
selection of the most appropriate combination of external forced
conditions to be used for system identification of reduced-order
models of flow systems. Finally, a problem specific to the particular
technique adopted in the subdomain separation method regards the
necessity of identifying a specific control input region in the spatial
domain, where the control input acts as a boundary condition, which
may not be possible for some flow configurations.

In this paper, we explore two alternative control input separation
methods which rely upon an expansion of the flowfield in terms of
baseline POD modes and actuation modes, where the former is
derived from snapshots of the baseline flow and the latter from

actuated flow data. The idea of adding actuation modes to the POD
expansion draws inspiration from the concepts of shift mode and
interpolated POD modes developed by Noack et al. [12,37]. To
obtain the actuation modes, the approach proposed in this paper uses
a concept of “innovation flowfield” similar to the split-POD
employed by Camphouse [38], where a finite-dimensional
approximation of the subspace orthogonal to the one spanned by
baseline POD modes was also employed to construct the overall set
of basis functions. However, the approach taken in [38] differs from
the ones proposed herein in the use of weak formulation to render the
control input explicit in the Galerkin system.

It is shown that the proposed methods address to a satisfactory
extent the problems associated with the previous approach, while
being more theoretically sound. In addition, by using several inputs
for system identification, an inquiry is made about the best selection
of forcing conditions to be used in the derivation of the reduced-order
model.

The paper is organized as follows. Section II introduces the cavity
flow experimental setup. Section III presents the motivations for this
study. Section IV explains the new separation methods in detail.
Section V provides experimental verification of the methods by
illustrating their capabilities in providing a reconstruction of the
flowfield and in generating models which are appropriate for
feedback control. Section VI provides concluding remarks.

II. Cavity Flow Experimental Setup

In this section, a brief description of the experimental setup located
at The Ohio State University Gas Dynamics and Turbulence
Laboratory is summarized. The complete details of the experimental
setup can be found in [20,39]. The experimental facility is an
instrumented, optically accessible wind tunnel that operates in a
blowdown fashion with atmospheric exhaust. The air is conditioned
in a stagnation chamber before entering a smoothly contoured
converging nozzle to the 50:8mm � 50:8 mm test section, and can
run continuously in the subsonic range betweenMach 0.25 and 0.70.
The test section contains a shallow cavitywith a depthD� 12:7 mm
and length L� 50:8 mm for an aspect ratio L=D� 4. For control
purposes, a 2-D synthetic jet-type actuator is used to force the cavity
shear layer at its receptivity region. The forcing is issued at 30 deg
relative to the main flow from a 1 mm slot embedded in the cavity
leading edge that spans the width of the cavity (see Fig. 2a). The
mechanical oscillations necessary for the flow actuation are provided
by a selenium D3300Ti compression driver. The actuation jet has a
zero net mass, nonzero net momentum flow.

A LaVision, Inc., particle imaging velocimetry (PIV) system [40]
is used to acquire the snapshots of the flowfield required for the
development of the low-dimensional model. A dual-head Spectra
Physics PIV-400 Nd:YAG laser operating at the second harmonic
(532 nm) is used to form a thin (1 mm), vertical sheet spanning the
streamwise direction of the cavity at the middle of the test section
width. The time separation between the laser pulses for the flow at
Mach 0.30 in our experimental setup is 1:8 �s. For each image,
subregions are cross correlated by using multipass processing with
50%overlap. The resulting vector fields are postprocessed to remove
any remaining spurious vectors. This setup gives a velocity vector
grid with vector separation of approximately 0.4 mm.

Dynamic surface pressure measurements are taken with flush-
mounted Kulite transducers placed at various locations on the walls
of the test section. Figure 2b shows the locations of the transducers
used in this study. The signal from the transducers are low-pass
filtered at 10 kHz. These pressure measurements are recorded
simultaneously with the PIV measurements, using a National
Instruments PCI-6143 S-series data acquisition board, and are used
for state estimation. For each flow/actuation condition explored,
1000 PIV snapshots are recorded. Correspondingly, for each PIV
snapshot, 128 pressure samples from the laser Q-switch signal and
from each of the transducers of Fig. 2b are acquired at 50 kHz. The
system is programmed for the PIV image to fall approximately in the
middle of the 128 pressure data points. This simultaneous sampling
allows for the identification of the section of pressure time traces that

Fig. 1 Schematic of flow over a shallow cavity.
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corresponds to the instantaneous PIV velocity field. Additional,
longer recordings of 262,144 samples per channel acquired at
200 kHzwere also used to derive sound pressure level (SPL) spectra.

A dSPACE DS1103 PPC controller board is used for real-time
feedback control. This system uses four independent, 16-bit A/D
converters each with four multiplexed input channels to acquire and
process signals at a rate up to 50 kHz per channel. The pressure
signals are also bandpass filtered between 100 Hz and 10 kHz to
remove spurious frequency components.

The dynamic compensator developed in Kim et al. [33] has been
employed to shape the frequency response of the synthetic-jetlike
actuator. The compensator increases the loop gain and suppresses the
unfavorable frequency peaks in the actuator response due to the
internal acoustic phenomena associated with the converging nozzle.
As a result, the actuator response in the frequency domain can be
considered to be approximately flat in the region of interest (1–
5 kHz). This makes it possible to effectively use a band-limited white
noise signal as input voltage to the actuator to force the flow in the
cavity.

III. Motivations for the Study

In this section, the motivations behind this study are highlighted
by first providing a summary of the POD/GP approach to obtain a
reduced-order model of the cavity flow, and pointing out the
difficulties encountered from a control theory perspective. Then, the
subdomain separation method used in our previous studies [20,34] is
briefly reviewed to provide a comparison with the methodology
developed and presented herein.

A. Proper Orthogonal Decomposition/Galerkin Projection Based

Modeling

The dynamics of the cavity flow are described by the Navier–
Stokes equations. Although the baseline flow employed in our
studies is around the incompressible limits (Mach 0.3), the
compressible form of the equations were used for the derivation of a
model of general validity. The flow was treated as isentropic to
simplify the final form of the system. Following the procedure
presented byRowley et al. [41], the compressible formof theNavier–
Stokes (NS) equations can be written as

Du

Dt
� 1

M2

2

� � 1
rc� 1

Re
r2u

Dc

Dt
� � � 1

2
cdivu� 0 (1)

where u�x; t� � �u�x; t�; v�x; t�� is the flow velocity in the
streamwise and normal direction, c�x; t� is the local speed of sound,
the operatorD=Dt� @=@t� u � r stands for the material derivative,
and x� �x; y� denotes Cartesian coordinates over the spatial domain
� � R2. The constants �, Re, and M denote, respectively, ratio of
specific heats, Reynolds number, and Mach number. These
equations can be expressed in compact form as the functional
differential equation

_q� X�q� :� C�L�q� �Q�q; q� (2)

defined on the Hilbert space H� L2��;R3� of square-integrable
functions on �, where q :� �u � u0; v � v0; c � c0� 2 H is the
fluctuations of the flow velocity about the mean value q0�
�u0; v0; c0�. In Eq. (2),C is a constant operator,L is a linear operator,
and Q�q; q� is quadratic in q. For convenience of the reader, a brief
summary on the derivation of this compact form can be found in
Appendix A. The reader interested in the full details is referred to
[41].

The POD/GP procedure decomposes the flowfield vectors to a
small number of spatial orthogonal modes, �i�x�, i� 1; . . . ; N, that
capture the spatial distribution of the structures and the
corresponding modal amplitude coefficients ai that capture the
temporal evolution of these modes. This set of modes retains the
largest portion of the kinetic energy of theflowas defined by the inner
product being used [14,41]. To compute the POD basis, Sirovich’s
method of snapshots [42] is applied. Measurements of the flow
velocity field u�xi; tj� are acquired using PIV over a spatial
discretization of the domain�. The corresponding values of the local
speed of sound c�x; t� are computed from the local temperature
T�x; t� using the relation c� ��RT�1=2, whereas the local
temperature is obtained again from the flow velocity, noticing that
for isentropic flows cpT0 � cpT�x; t� � ku�x; t�k2=2, where cp is
the specific heat at constant pressure and T0 is the measured
stagnation temperature. Once the PODmodes�i have been obtained,
the fluctuating component of the flowfield can be represented as the
finite-dimensional approximation defined by

q �x; t� 	
XN
i�1

ai�t��i�x� (3)

For the sake of simplicity, Einstein summation notation will be
used when convenient, and summation signs will be omitted. Then,
Eq. (3) becomes q�x; t� 	 ai�t��i�x�. The Galerkin projection
method is used to obtain a differential equation governing the
evolution of the modal amplitudes. This is achieved by replacing the
flow variables in the NS equation by the POD expansion, and
projecting the modified system onto the PODmodes, using the inner
product definition. The final form of the system corresponds to a set
of ordinary differential equations (ODEs) that is truncated to a
desired number of modes, based on the specific application. After all
the simplifications are carried out, the Galerkin system can be
expressed as

_a k � Fk �Gikai �Hijkaiaj; k� 1; . . . ; N (4)

where Fk, Gik, and Hijk depend on parameters in Eq. (2).
It has been noted [34] that the solution of the system (4) often

diverges independently of the initial condition used. This has been
attributed to numerical errors in the spatial derivative terms present in
system (4) and to the finite number N of modes retained to describe
the flow. This reduced set not only loses some flow details, but also
fails to capture the process of energy transfer between theN retained

Fig. 2 Schematics of the OSU GDTL cavity flow experimental setup.
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modes and those that are neglected. This can be corrected by the
introduction of an additional viscous term, the modal eddy viscosity.
The details of its implementation to the current work can be found in
Caraballo et al. [34]. The addition of this viscosity term to the model
helps in maintaining the overall flow energy balance, and it also
compensates for other small errors introduced in the derivation of the
model. From this point on, the viscous termwill be included in all the
models derived even if there is no explicit mention to it.

At this point, it is clear that the effect of actuation is contained in
the coefficients of the Galerkin system (4), and does not appear
explicitly as a separate term on the right-hand side of the equation. To
remedy this situation, in our previous work [20,34], the so-called
subdomain input separation method [35,36] was applied. Here, we
will limit ourself to providing a brief summary of the method,

highlighting the issues encountered that promoted the need to pursue
alternative methodologies.

B. Subdomain Separation Method (M0)

The subdomain separation method is based on a special treatment
of the boundary elements of the spatially discretized governing
equations. The procedure takes advantage of the linear property of
the inner product by dividing the entire flow domain into two
subdomains, so that���1 [�2, as shown in Fig. 3. The smaller
domain�1 comprises the physical region where the actuation enters
the flowfield, and the larger region �2 contains the rest of the
flowfield. Input separation was performed during the Galerkin
projection implementation by splitting the inner product as

h�; �i� � h�; �i�1
� h�; �i�2

Then, the boundary conditions are imposed on �1. This involves
repartitioning the domain by changing the limits of a Riemann
integral computed over nonoverlapping subdomains embodying the
domain of the original integral when they are united. The procedure
yields a nonautonomous set of ODEs in the following form:

_a k � Fk �G1ikai � g2k��H1ijkaiaj �H2ikai� (5)

θ
Γ(t)

Ω1

U∞

x

Ω2

Fig. 3 Subdomain control input separation method.

a) Baseline flow (Mach 0.3)

b) Open-loop forcing at f = 3920 Hz (F4)

c) Baseline and F4 combined (BF4)

d) Baseline, open-loop forcing at f = 1610 Hz (F1), and F4 combined (BF1F4)

e) Band-limited white noise forcing (Wn)

Fig. 4 POD modes of the different flow conditions used for the development of the reduced-order models.
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where � is the external input, which in our studies is given by the
voltage applied to the synthetic-jetlike actuator. Further details on the
application of this separation method to the cavity flow control
problem can be found in the aforementioned references.

As mentioned in the Introduction, although the subdomain
separation method provides a means to obtain the control input term
explicitly, there are still several important issues associated with this
procedure that surfaced during the derivation, implementation, and
experimental evaluation of the reduced-order models. First, the
procedure requires an identifiable region in the flow where the
forcing is introduced, which may be difficult in many flow
configurations. Second, the separation is performed after the POD
basis of the entire flowfield is obtained. The forcing effect is
embedded within the PIV snapshots used to derive the model, and
thus the POD modes derived from snapshots of actuated flow are
dependent on the data set used in the derivation. Figure 4 shows the
first four POD modes of several models based on the M0 method
corresponding to various forcing conditions, including the baseline
flow.¶ Although the spatial evolution of the POD modes exhibit a
change as a result of the actuation, the Galerkin model does not show

any significant correlation between the control input and the modal
coefficients ai�t�. This issue can be clearly observed in Fig. 5, which
shows the numerical solution of the Galerkin system (5) obtained
using different combinations of baseline and actuated data sets
(models M0B, M0BF4, M0BF1F4, and M0Wn) when forced by
sinusoidal signals at frequency f� 1610 Hz (F1) and f� 3920 Hz
(F4). It can be noted that the addition of the forcing term does not
show any effects on the amplitude and/or frequency of the modal
coefficient. This was observed independent of the model or forcing
frequency used. This creates a mismatch in scale between values
obtained in simulation for the control and its actual value to be used in
real-time experiments. In our previous studies, the amplitude of the
forcing term had to be increased up to 100 times for the solution of
system (5) to show any significant change. This phenomenon is
clearly related to a severe underestimation of the magnitude of
control vector field in the reduced-order model. Naturally, it was
speculated that the source of the problem lies within the method for
control separation adopted in the construction of the reduced-order
model.

IV. Alternative Approaches to Input Separation

To address the issues discussed in the previous section, two
alternative approaches were developed to separate the control from
the boundary conditions. Both methods treat the control input as
additional terms in the POD expansion bymeans of actuationmodes.

a) Model M0B b) Model M0BF4

c) Model M0BF1F4 d) Model M0Wn

Fig. 5 Time series and power spectrum of the first modal amplitude of the Galerkin system obtained using subdomain input separation. The second
label represents the external input applied to the Galerkin model in nonlinear simulations: nc (no control), F1 (f � 1610 Hz), and F4 (f � 3920 Hz).

¶Each individual case is indicated in the nomenclature used for the model
by adding the corresponding forcing after the method name. For instance,
M0B refers to the initial model based on the baseline flow case,M0BF4 to the
M0 method based on combination of baseline and F4 snapshots, and so on.
The nomenclature is consistent with the one adopted in [20] (see Table 1).
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The first method (M1) is based on an augmented POD expansion of
the actuated flow and relies upon stochastic estimation to correlate
the modal coefficients of the actuation modes to the input. In the
second method (M2), which is based onL2 optimization, the control
input enters directly as a modal coefficient of an optimally selected
spatial mode. As the two methods have several features in common,
we will first start by defining concepts that are common to both
approaches. Then, each approachwill be discussed inmore detail and
compared.

A. Basic Concepts

The basic idea behind the new approaches is to introduce the
presence of control input in the process before the Galerkin
procedure is applied. This is accomplished by complementing the set
of baseline POD modes in the POD approximation of the flowfield
fluctuations with additional actuation modes that have the role of
resolving the variation of the flowfield due only to the affect of
external forcing.

In the approach considered in this paper, first, a set of baseline
modes�bi �x� are determined from snapshots of the baselineflow, that
is, the case when �� 0 as shown in Fig. 4a. Given snapshots of the
actuated flow fluctuations q�x; t�, the innovation ~q�x; t� is defined as

~q�x; t� :� q�x; t� � PSq�x; t� (6)

where S :� spanf�bi gi�1;...;N and PS is the standard projection
operator ontoS. The innovation represents the information contained
in the actuated flow that can not be captured by S. Figure 6 provides a

graphical illustration of this concept. A set of actuationmodes�aci �x�,
i� 1; . . . ; Nac can then be constructed from snapshots of the
innovation, using one of the two methods to be described next. As a
result, the flowfield can be represented using an expansion of the
form

q �x; t� 	
XN
i�1

abi �t��bi �x� �
XNac

i�1
aaci �t��aci �x� (7)

where aaci �t� � hq; �aci i. Ideally, the innovation vanishes in the
absence of external forcing, and thus the baseline flow should be
recovered in an expansion along baselinemodeswhen��t� � 0. As a
result, the modal amplitudes associated with the actuation modes
should vanish as well. The procedure to construct the basis functions
�aci �x�, and the way the amplitudes aaci �t� are related to ��t�,
constitute the difference between the two methods described in the
next sections.

B. Actuation Modes Based on POD Expansion of the Innovation

(M1)

The first method to obtain the actuation modes relies upon a POD
expansion of innovation flow data, followed by a stochastic
estimation procedure to correlate the modal amplitudes with the
external input. Once the baseline POD modes �bi are built and the
innovation is constructed, as described in Sec. IV.A, the modes �aci
are determined using the POD procedure from snapshots
~qk � ~q�x; tk�. Although, by definition, the actuation modes should
be orthogonal to the baselinemodes, theGram–Schmidt procedure is
then used to make sure that the orthonormality condition is satisfied
among all modes. Figure 7 shows the control modes f�aci g

Nac

i�1, where
Nac � 4, computed under three different actuations: F4, F4 and F1
combined, and white noise. It can be observed that the modes
obtained from white noise forcing have a more random spatial
distribution, with no defined number of structures present, whereas
the other two cases show the presence of structures (identified by
pairs of dark and light contours) along the shear layer region. The
next step is the correlation of the actual forcing input with
the actuation mode coefficients in Eq. (7). The voltage input to
the actuator is the most natural choice for the forcing input, as in

a) F4 forcing

b) Combination of F1 and F4 forcing

c) White noise forcing

Fig. 7 Control modes for separation method M1, based on different forcing conditions.

span {φ φb
1 , . . . , b

N }

q

q̃

φ ac
i

Fig. 6 Graphical representation of baseline POD subspace, innovation,
and actuation modes.

CARABALLO ET AL. 2311



closed-loop operations it represents the actual control signal sent into
the system, as computed by the feedback controller. For the purpose
of correlating aaci �t� with ��t�, a quadratic stochastic estimation
procedure [28,34,43,44] is employed, yielding an expression of the
form

aaci �t� 	Mi��t� �Oi��t�2 (8)

whereMi and Oi are, respectively, the coefficients of the linear and
quadratic terms of the estimator. Once the coefficients of Eq. (8) are
computed by least-squares optimization, substitution of Eq. (8) into
Eq. (7) yields

q �x; t� 	
XN
i�1

abi �t��bi �x� �
XNac

i�1

Mi��t� �Oi��t�2��aci �x�

�
XN
i�1

abi �t��bi �x� � ��t� 1�x� � ��t�2 2�x� (9)

where

 1�x� :�
XNac

i�1
�aci �x�Mi;  2�x� :�

XNac

i�1
�aci �x�Oi

are the final expressions on the actuation modes with temporal

coefficients expressed in terms of the external input. Once the final
form [Eq. (9)] of the POD expansion is obtained, Galerkin projection
is performed on the governing equations, yielding a Galerkin model
of the form

_ak � Fk �G1ikai � g2k��H1ijkaiaj �H2ikai�

� �h3k � g3k��2 �H3ikai�
2 � h4k�3 � h5k�4 (10)

where

Fk �
D
C; �bk

E
; Gik �

D
L
�
�bi

�
; �bk

E
g2k �
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a) Model M1BF4

b) Model M1BF1F4 c) Model M1Wn

Fig. 8 Time series and power spectrum of the first modal amplitude of the Galerkin system obtained using method M1. Results for the baseline model

M0B are reported for comparison.
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Now that the model is complete, one can solve system (10)
numerically to test its behavior under different forcing inputs.
Figure 8 shows the numerical solution of the preceding Galerkin
system for three different models, based on the flow conditions used.
It can be observed that when the control is not present (nc), the
solution of the different systems match the baseline case solution
(M0B), as desired. When forcing is introduced (for example,
case F4), a change is noticed in the amplitude and frequency of the
modal coefficients. This is observed for all the combinations tested.
This seems to address the sensitivity issue of the initial model (M0),
where no difference was observed when the forcing was introduced
into the system in simulation.

C. L2 Optimization (M2)

The second method that was developed relies on defining and
solving an optimization problem so as to identify a single actuation
mode to augment the POD expansion, in such way that the system
input is directly the coefficient of  . To elaborate, the expansion
sought is of the form

q �x� 	
XN
i�1

abi �t��bi �x� � ��t� ��x� (11)

where the actuation mode  � is to be chosen so as to minimize the
energy not captured by such an expansion. The rest of this section
will introduce this idea formally.

The first step consists of obtaining the baseline PODmodes�bi and
building the innovations ~q, as described in Sec. IV.A. Then, an
optimization problem on the Hilbert space H is defined as

 � � argmin
 2H

Efk ~qk � �k k2g (12)

where � ~qk;�k� � � ~q�x; tk�;��tk�� are snapshots of the innovation
and the corresponding forcing input, Ef�g denotes temporal
averaging, and the norm is the one induced by the inner product onH.
The solution of the optimization problem  � is chosen as the
actuationmode. Therefore, among all augmented PODexpansions in
the form given in Eq. (11), where the input � directly appears as the
coefficient of  , the choice  �  � is optimal in the sense that the
energy not captured by this expansion achieves there its minimum
value. The following theorem summarizes the main result:

Theorem IV.1. Let J� � :� E
k ~qk � �k k2�. Then,
1) The minimum value of the function J is achieved at

 � � E
�k ~qk�
E
��k�2�

2) For  � 2 H.
3) For  � ? �i for i� 1; . . . ; N.
For a proof of Theorem IV.1, see Appendix B.
It is worth noting that, similar to the method of snapshots, the

infinite-dimensional optimization problems in Eq. (12) admits a
finite-dimensional solution. Galerkin projection of the NS Eqs. (4)
onto the subspace spanned by �bi , i� 1; . . . ; N and  � yields a
Galerkin model of the form

_a k � Fk �G1ikai � g2k��H1ijkaiaj �H2ikai�� h3k�2 (13)

where

Fk �
D
C; �bk

E
; G1ik �

D
L
�
�bi

�
; �bk

E
; g2k �

D
L� ��; �bk

E
h3k �

D
Q� �;  ��; �bk

E
H1ijk �

D
Q
�
�bi ; �

b
j

�
; �bk

E
H3ik �

D
Q
�
�bi ;  

�
�
; �bk

E
�
D
Q
�
 �; �bi

�
; �bk

E
Figure 9 shows the control mode  � computed under three

different actuations: F4, F4 and F1 combined, and white noise (Wn).
Again, the mode obtained using white noise excitation shows no
defined structures, whereas the mode based on sinusoidal forcing

contains well-defined structures around the shear layer region. The
sensitivity of model M2 to the forcing input can be now tested
numerically, as done previouslywithmodelM1. Figure 10 shows the
results of the numerical solution of the Galerkin models M2BF4,
M2BF1F4, and M2BWn corresponding to the three different data
sets used for system identification. The results obtained with this
method are similar to the ones obtained with the previous model:
When no external input is applied (nc), the solution of the Galerkin
systems matches the baseline case solution (M0B). However, when
forcing is introduced (i.e., F4), there is a noticeable change in the
amplitude and spectrum of the modal coefficient.

D. Comparison Between the Proposed Approaches

A first comparison between the two methods regards the structure
of theGalerkin systems given byEqs. (10) and (13), respectively. It is
worth noting that the coefficients of the so-called drift vector field
(that is,Fk,G1ik, andH1ijk) are the same for the two models, because
they are obtained from the same baseline snapshots. The difference
resides in the control-dependent terms. The cubic and quartic terms
in � appearing in Eq. (10), not present in Eq. (13), are due to the
choice of a quadratic estimation method to correlate the temporal
coefficients aaci �t� to the forcing input ��t�. Setting Oi � 0, the
estimation expression in Eq. (8) reduces to a linear stochastic estima-
tion, which yields for M1 a reduced-order model of the same form of
Eq. (13), albeit with different coefficients. In this regard, it is useful to
compare the twomodels in the case that a linear estimation is adopted
for M1. Because the choice  �  � is optimal (in the sense that the
mean-squared error is minimized), themodelM2 is expected to yield
a better approximation of theflowvariables over any PODexpansion
of the form of Eq. (11), including the one in which  is obtained
by means of linear stochastic estimation, as in M1. Moreover, it is

a) F4 forcing

b) Combination of F1 and F4 forcing

c) White noise forcing

Fig. 9 Control mode � for separation method M1, based on different

forcing conditions.
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a) Model M2BF4

b) Model M2BF1F4 c) Model M2Wn

Fig. 10 Time series and power spectrum of the first modal amplitude of the Galerkin system obtained usingmethodM2. Results for the baseline model

M0B are reported for comparison.

Fig. 11 Comparison between the actuated POD-stochastic estimation (M1) and the L2 optimization (M2) methods.
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also reasonable to expect that, as the number of actuated POD
modes increases, the result of the actuated POD method with
linear stochastic estimation approaches that of the L2 optimization,
that is,

lim
Nac!1

XNac

i�1
Mi�

ac
i �  �

This intuition is supported by the results shown in Fig. 11, which
compares the optimal mode found by L2 optimization with the
modes  1 resulting from the method M1 with linear stochastic
estimation when Nac � 4, 6, and 20, respectively. For reasons of
space, only the modes associated with the vertical components of the
velocity are shown. Comparing the figures, it is seen that, indeed, this
conjecture seems to be verified.

AlthoughM2 is undoubtedly a more economical method thanM1
(no stochastic estimation is required, hence it is less expensive from a

Table 1 Nomenclature for baseline and open-loop forced flows and

models

Case Comments

B Baseline flow
F1 Open-loop forcing at f � 1610 Hz
F4 Open-loop forcing at f � 3920 Hz
Wn Band-limited white noise forcing
M0 Subdomain separation method
M0B Model based on method M0 using baseline snapshots
M0BF4 Model based on method M0 using baseline and F4

snapshots
M0BF1F4 Model based on method M0 using baseline, F1, and F4

snapshots
M0BWn Model based on method M0 using Wn snapshots
M1 Separation method using actuated POD expansion
M1BF4 Model based on method M1 using baseline and F4

snapshots
M1BF1F4 Model based on method M1 using baseline, F1, and F4

snapshots
M1BWn Model based on method M1 using baseline and Wn

snapshots
M2 Separation method using L2 optimization
M2BF4 Model based on method M2 using baseline and F4

snapshots
M2BF1F4 Model based on method M2 using baseline, F1, and F4

snapshots
M2BWn Model based on method M2 using baseline and Wn

snapshots

Table 2 Comparison criteria for the subdomain (M0), actuated POD-

stochastic estimation (M1), and L2 optimization (M2) methods

Criteria M0 M1 M2

Provides the input � as a separate term Yes Yes Yes
Requires identification of a control region Yes No No
Consistent with baseline flow for �� 0 No Yes Yes
Correctly estimates magnitudes of control terms No Yes Yes

a) Actuation modes based on combination of F1 and F4 forcing

b) Actuation modes based on white noise forcing

Fig. 12 Mean-squared error in the reconstruction of the velocity field for forced case F1.Actuationmodes based on a) combination of F1 andF4 forcing,

and b) white noise forcing.
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computational point of view), the M1 approach offers more
flexibility, in the sense that no particular dependence is assumed
a priori between the input and the temporal coefficients aaci �t� of the
actuation modes �aci in the augmented POD expansion. This, in turn,
leaves an additional degree of freedom to be exploited for the design
of the estimator, which is not limited a priori to a linear least-squares
algorithm. In synthesis, it is fair to say that although method M2
offers a preferable solution over method M1 when a very-low-order
and low-complexity model is sought, method M1 is more general,
and may lead to better results in specific applications.

Finally, Table 2 shows a summary of the benefits of the M1 and
M2 methods for reduced-order modeling as compared with the
subdomain separation method. For the new separation methods, the
PIV images used to obtain the POD modes do not require an
identifiable control input region. Therefore,methodM1orM2 can be
used in the study of flowfields where it is difficult to capture the
control input region or where the region of interest is away from the
boundarieswhere the control is applied. UnlikeM0,methodsM1 and
M2 reduce exactly to the baseline case under no input (�� 0)
condition and improve the scaling of the control-related terms in the
reduced-order models. In particular, it has been verified (see next
section) that reduced-order model-based controllers designed on the
basis of either M1 or M2 can be applied to real-time experiments

without the need to resort to substantial ad hoc modifications of the
controller gains.

V. Model Validation and Experimental Results

This section will provide experimental results to test the behavior
of reduced-order models based on the two new methods, derived
using combinations of snapshots of various forced flow conditions.
The performance of the new models will be also compared with the
best case obtained for the subdomain separation method in previous
studies. The models will be evaluated in their capability to yield a
reconstruction of snapshots of actuated flow velocity fields (in open-
loop operation), as well in their capability to provide reduced-order
models which are suitable for model-based control (in closed-loop
operation).

A. Velocity Reconstruction

Thefirst test to evaluate the quality of the newmodels concerns the
reconstruction of the velocity field of individual forced cases using
the baseline POD expansions augmented with the actuation modes.
Snapshots of the reconstructed flowfield will be compared with
snapshots of the original flowfield to evaluate the ability of the

a) Actuation modes based on combination of F1 and F4 forcing

b) Actuation modes based on white noise forcing

Fig. 13 Mean-squared error in the reconstruction of the velocity field for forced case F4.Actuationmodes based on a) combination of F1 andF4 forcing,

and b) white noise forcing.
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models to recover various forced flow cases. This will allow us to
confirm that the newly developed techniques perform satisfactorily
at the POD expansion level, before Galerkin projection is applied.
Also, this test will be used to determine the most appropriate
selection of the forcing condition to be employed in the construction
of the POD basis, which is one of the outstanding problems in
reduced-order modeling.

Models for methods M1 and M2 have been obtained using
snapshots of individual forced flows (namely, F4 or Wn) and
combination of the forced case F1 and F4. The snapshots used for the
construction of the actuation modes will be referred to as the model
identification data set, and those used for evaluation as the model
validation data set. The nomenclature used to identify the models is
summarized in Table 1.

a) Model M1BF4

c) Model M1BF1F4 d) Model M2BF1F4

e) Model M1Bwn f) Model M2BWn

b) Model M2BF4

F

F

F F

F

F

Fig. 14 Sound pressure level obtained under LQ control at design condition M � 0:30, for models built with methods M1 (left) and M2 (right).
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For the reconstruction of the velocity field, first, the baseline
modes and the actuationmodes are computed using the identification
data specific to a givenmodel. It must be noted that the average value
of the augmented velocity field q0�x� is computed at this stage using
baseline snapshots only, because it has been shown inLittle et al. [40]
that, for the current flow conditions, the external forcing does not
substantially affect the mean flow. Then, for the model validation
data �q�x; tk�;��tk��, the reconstructed flowfield is obtained by
projecting the velocity fluctuations onto the baseline basis and by
multiplying the control modes by the corresponding value of the
input �, measured at the same time the PIV image is acquired. For
instance, for the M1 method, this corresponds to computing the
reconstructed flowfield fluctuation qr�x; t� as

qr�x; tk� �
XN
i�1

D
q�x; tk�; �bi �x�

E
�bi �x� � ��tk� 1�x�

� ��tk�2 2�x�

and similarly for M2. Then, the mean-squared error between
the actual velocity and its reconstructed value is computed as
follows:

e �x� �

��������������������������������������������������������
1

Ns

XNs
k�1

qr�x; tk� � q�x; tk��2

vuut (14)

whereNs is the number of snapshots in the model validation data set.
The most interesting cases, which will be discussed here, regard,

respectively, the following situations:
1) The identification data set includes snapshots of the forcing

condition used for validation, together with snapshots from other
forced flows.

2)Model identification has been carried out usingflow forcedwith
band-limited white noise.

As amatter of fact, it is well known that using the same data set for
both model identification and model validation does not constitute a
statistically reliable test. On the other hand, a sizable approximation
error is somewhat expected when using completely different data
sets (for example, F1 for identification and F4 for validation).

The results shown here correspond to the cases when the F1–F4
and theWn control modes are used to reconstruct the forced cases F1
(Fig. 12) and F4 (Fig. 13). The figures show the mean-square error in
each velocity component for both separation methods, M1 and M2.
Surprisingly enough, it is clear from both figures that the error levels
are lower for the Wn-based modes (Figs. 12b and 13b). In this case,
the error is concentrated in the initial shear layer region and close to
the leading edge. We suspect that this is due to two factors: 1) the
difference in mean flow, which has been neglected in the modeling,
and 2) existence of smaller-scale structures and larger gradients in the
initial shear layer region, which could contribute to both
measurement and calculation errors. For the results based on
identification data F1–F4, it can be observed that the error spreads in
a larger region, midway point in the cavity, and toward the trailing
edge. We believe that the main reason for the difference in the mean
error is the nature of the structures present in the control mode basis.
It can be noticed in Figs. 7 and 9 that the actuation modes for the F1–
F4 case contain large and well-organized structures, whereas theWn
case does not. The structures arise as a result of the periodic forcing
used in the F1–F4 case, which tends to bias the data. Reconstruction
using the F1 or F4 basis for identification showed a behavior similar
to the F1–F4 case, with lower error levels for the same forcing used
for validation and higher for the other. However, the Wn case still
showed the best results among all the cases tested.

B. Feedback Control

The next step is to compare the performance of feedback
controllers built on the basis of the givenmodels. As discussed in the
Introduction, our group at GDTL has already obtained satisfactory
experimental results in closed-loop operation with a controller

designed on the basis of reduced-order models relying upon the
initial method M0 [20]. The aim of the comparison between M1 and
M2 to M0 in this section is to verify that controller designs using the
new models perform at least as well as the previous one in
experiments, if not better.

The feedback control algorithm for the new models was designed
using the scaled linear quadratic (LQ) approach that was adopted in
our previous studies [20,45]. The controllers obtained for the new
models M1BF4, M2BF4, M1BF1F4, M2BF1F4, M1BWn, and
M2BWn are tested experimentally in the cavity flow and the results
are compared with those obtained with the initial model MB0.
Figure 14 shows the SPL reduction obtained by the LQ state
feedback control for the different models tested in Mach 0.3 cavity
flow, which is the design condition. The thin line yields the SPL of
the unforced baseline flow, whereas the thick line corresponds to the
SPL of the flow at the same location under state feedback control. It
can be observed from the figure that all the models show
improvement with respect to the uncontrolled flow by reducing the
resonant peak bymore than 18 dB. However the controllers based on
M1BF4 andM2BF4 seem to exacerbate a peak around 3.2 kHz, near
the resonance frequency, although this behavior is not observed for
the other controllers. Overall, the results compare very favorably
with those obtained with the model MB0, shown in Fig. 15. As we
have done in our previous studies for the initial method (M0), the
performance of the controllers are also tested in closed-loop
experiments for off-design flow conditions in the neighborhood of
Mach 0.30. As an example, Fig. 16 shows the performance of the
closed-loop system for a Mach 0.28 flow. It can be noticed that each
controller is capable of maintaining qualitatively the same general
characteristics and benefits as in the Mach 0.30 design condition.
This is consistent with our previous results [20], which showed the
robustness of the control-loop system for small deviations from the
design condition. Finally, to quantify the benefits of each model, the
average reduction obtained in the overall sound pressure level
(OASPL) vs the mean voltage (Vrms) used for each controller have
been computed and compared. Whereas the results presented in
Figs. 15 and 16 are based on a single pressure sensor, the OASPL
results are based on all six sensors used in the experiments (see
Fig. 2b). Figure 17 shows the result of this comparison for all the
different models used in each of the two freestream flow conditions
tested. An important observation is that the models based on the new
separation methods require less power to achieve similar or better
performance. This is true for all the flows tested. Overall, the models
based on white noise identification data perform significantly better
than the others, especially as far asmodelM1BWn is concerned. This
is a clear indication that a better representation of the flow dynamics
is attained in this case, and thus the corresponding controller tends to
operate closer to optimal conditions.

F

Fig. 15 Sound pressure level obtained under LQ control at design

conditionM � 0:30, formodel built withmethodM0 (Samimy et al. [20]).
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VI. Conclusions

In this paper, we presented our most recent progress in the
development of reduced-order model-based feedback flow control.
Two new control input separation methods are developed and tested
experimentally. The methods incorporate the control input through
an additional set of modes obtained from the innovation between a
forced flow and its projection onto the baseline modes. The new
methods are developed to address the issues and restrictions raised

about the initial subdomain separation method, especially from the
theoretical point of view. Toward this goal, the newmodels provided
important improvements over the initial methodology. The new
methods were then evaluated at the POD level for their ability to
reconstruct different actuatedflows, even those that are not part of the
data set used for model identification. It was observed that the best
performance in terms of reconstruction of a wide range of flowswere
obtained for models built from the basis obtained from white noise

a) Model M1BF4

c) Model M1BF1F4

e) Model M1BWn f) Model M2BWn

b) Model M2BF4

d) Model M2BF1F4

F

F

F F

F

F

Fig. 16 SPL under LQ control at off-design condition M � 0:28, for models built with methods M1 (left) and M2 (right).
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excitation. Linear-quadratic controllers, built on the basis of the
models obtained from the new separation methods, were tested in
experiments. The results obtained showed that all the controllers
significantly reduce the resonant peak of the single-mode Mach 0.3
flow, for which they were designed, without significantly
introducing other undesirable peaks. The controllers also performed
satisfactorily for off-design conditions. These results compared
favorably or behaved similarly to the controllers designed in our
previous studies. However, the new models showed a distinct
superiority in terms of the ratio between overall sound pressure level
attenuation and power consumption. Finally, the analysis revealed
that models derived using white noise forcing outperform the others.
Although the results are preliminary, the possible outcome is quite
appealing: Applying white noise forcing does not require one to
evaluate the system response under forcing to select the frequencies
that yield the desired response. This reduces the amount of
experimental data required and the runtime for themodeling process,
and could constitute a possible answer to the long-standing question
regarding which flow conditions to use in the identification of
reduced-order models.

Appendix A: Governing Equations

The nondimensional∗∗ isentropic compressible Navier–Stokes
equations given in Eq. (1) can be expressed in compact form as
follows [41]:

_�q� 1

Re
L1� �q� �

1

M2
Q1� �q; �q� �Q2� �q; �q� (A1)

where �q� �u; v; c� � q� q0 denotes the augmented flow velocity,
and

L 1� �q� �
uxx � vyy
vxx � vyy

0

 !
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2
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A

Since _q0 � 0, Eq. (A1) yields
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Therefore, Eq. (2) holds with
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Appendix B: Proof of Theorem IV.1

1) Note that

J� � � Efk ~qkk2 � 2�kh ~qk;  i � ��k�2k k2g

Since J is quadratic in  with positive leading coefficient Ef�2
kg, it

has a unique minimum. Computing the first variation of J with
respect to � 2 H yields

d

d�

����
��0
J� � ��� � d

d�

����
��0
Efk ~qkk2 � 2�kh ~qk;  � ��i

� �2
k k  � ��k2g � Ef�2�kh ~uk; �i � �2

kh � ��; �i
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For to be an extremumof J, itsfirst variationmust vanish8 � 2 H.
Therefore,

E
n
�2�k ~qk � 2�2
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�
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� 0

a) M = 0.30 b) M = 0.28
Fig. 17 Root mean square voltage vs average OASPL for several models at different Mach numbers: a)M � 0:3 (design condition), b)M � 0:28 (off-
design condition).

∗∗The governing equations have been nondimensionalized by scaling u by
the freestream velocity U1, the local speed of sound by the ambient sound
speed c1 � ��RT1�1=2, where T1 is the ambient temperature, the Cartesian
coordinates x by the cavity depth D, time by D=U1, and pressure by ��U2

1,
where �� denotes mean density.
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and thus, by linearity of Ef�g,

 � � Ef�k ~qkg
Ef�2

kg

2) The fact that  � 2 H follows immediately from linearity of
Ef�g.

3) To show that  � ? �bi for i� 1; . . . ; N, first note that ~qk ? S.
Then, for any i� 1; . . . ; N

h �; �bi i �
�
Ef�k ~qkg
Ef�2

kg
; �bi

�
� Ef�kh ~qk; �

b
i ig

Ef�2
kg

� Ef0g
Ef�2

kg
� 0
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