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A systematic approach for the dynamical modelling of the unsteady flow over a flapping
wing is developed, which is based on instantaneous velocity field data of the flow col-
lected using particle image velocimetry (PIV) and computational fluid dynamics (CFD)
simulations. The location and orientation of the airfoil is obtained by image processing
and the airfoil is filled with proper velocity data. Proper orthogonal decomposition
(POD) is applied to these post-processed images to compute POD modes and time
coefficients, and a discrete-time state-space dynamical model is fit to the trajectories of
the time coefficients using subspace system identification (N4SID). The procedure is
verified using PIV and CFD data obtained from a pitching NACA0012 airfoil. The sim-
ulation results confirm that the dynamical model obtained from the method proposed
can represent the flow dynamics with acceptable accuracy.

Keywords: flapping wing; dynamical modelling; proper orthogonal decomposition;
system identification; particle image velocimetry; computational fluid dynamics;
unsteady flow

1. Introduction

Using flapping wings to achieve flight is a topic of active research that has recently received
significant attention in the literature, especially in the area of micro air vehicles (MAVs).
MAVs using flapping wings have important advantages over conventional rotary-driven
aircraft such as higher manoeuvrability, increased efficiency, more lift and reduced noise
[1–3]. Flapping wing air vehicles are currently used in military applications such as aerial
reconnaissance without alerting enemies, in wildlife applications for studying endangered
species, for scaring away birds in airports that cause damage to aircraft engines and for
entertainment purposes by hobbyists and toy manufacturers [4]. Understanding and mod-
elling the aerodynamics of the flow of air over flapping wings is important because it can
help improve the advantages. However, the aerodynamics of flapping motion is a com-
plex non-linear system because of the unsteady interaction between the vortex topologies,
and it is therefore difficult to model accurately [5]. Efforts in this direction by our group
include the work of Kurtulus [6], in which artificial neural networks are used to model

*Corresponding author. Email: kasnakoglu@etu.edu.tr

© 2013 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

T
O

B
B

 E
ko

no
m

i V
e 

T
ek

no
lo

ji]
 a

t 0
2:

18
 2

2 
M

ay
 2

01
5 

mailto:kasnakoglu@etu.edu.tr


134 O. Durmaz et al.

the input–output responses to capture the most significant features of unsteady flapping
motion, and of Kurtulus et al. [7], in which numerical and experimental models are con-
structed using direct numerical simulations, laser sheet visualizations and particle image
velocimetry (PIV) measurements to understand the aerodynamics and vortex formation
mechanism during the different phases of unsteady flapping motion. Other works on this
topic include the work of Deng et al. [8], who developed a model that captures the main
dynamical features of a micromechanical flying insect capable of sustaining self-governing
flight through the use of linear estimation methods, and of Zbikowski [9], who introduced
a conceptual structure for the aerodynamic modelling of an insect-like flapping wing in
hover for MAVs and proposed two analytic approaches.

As it is the case for any flow process, physical meaning of the flow over flapping wings
can be understood and analysed mathematically by describing the flow in terms of velocity
vectors and representing it with dynamical models. The governing equations for fluid flows
are the Navier–Stokes (NS) partial differential equations (PDEs), which are capable of
representing these flows very accurately; however, due to their complexity, they are very
difficult to analyse and most of the time obtaining an analytical solution is not possible
[10]. For this reason, techniques such as proper orthogonal decomposition (POD) are used
to obtain a simpler representation of the velocity field and provide a convenient means to
analyse the flow behaviour. POD is a technique to decompose a flow velocity field into
spatial modes (POD modes) and time-dependent amplitudes (time coefficients). The POD
method extracts deterministic functions associated with large-scale energetic structures in
a flow. One can find many studies regarding fluid flows using POD methods including the
work by Noack et al. [11], who studied low-dimensional models for the transient and post-
transient cylinder wake and obtained reduced-flow methods by Galerkin projection (GP),
and the works by our group including Erbil and Kasnakoglu [12], where wavelet-based
functions are used for the decomposition to achieve a spatially local model. Additional
examples include the model reduction for compressible isentropic flows using POD and
GP by Rowley et al. [10] and balanced model reduction using POD by Wilcox and Peraire
[13]. Also, Tran and Ly [14] applied POD to the modelling and control of a complex flow
process, namely the Rayleigh–Bénard convection phenomena. By using POD, reduced-
order modelling for unsteady transonic flows around an airfoil is completed by Bourguet
et al. [15], where POD analysis was used to identify buffeting and von Karman instability
which are two main unsteady phenomena induced by compressibility effects that describe
the physics of flow. An excellent reference on reduced-order modelling for flow control,
including techniques mentioned above, is the book by Noack et al. [16].

Because the POD technique requires instantaneous velocity information (i.e. snap-
shots) to decompose the flow, the PIV measurement technique can be used to obtain
experimental data for the unsteady velocity field. Details of the PIV technique such as
PIV algorithms, optical considerations, tracer particles, illuminating lasers, recording hard-
ware, errors in PIV measurements and PIV vector processing can be found in the works of
Prasad et al. [17] and Raffel et al. [18]. Studies on PIV include the work of Scarano and
Riethmuller [19], who proposed an improved algorithm based on cross-correlation for the
interrogation of PIV images in flow problems by predicting the displacement of interroga-
tion areas by means of an iterative procedure. Daichin et al. [20] investigated the influence
of a water surface on the structure of the trailing wake of an NACA0012 airfoil using
PIV measurements of the flow at different ride heights between the airfoil and the surface.
Works that are most significant and related to this article are probably on the use of PIV
measurements as the set of snapshots required to obtain the POD modes. These include the
works of Druault et al. [21], who reconstructed the 3D in-cylinder mean flow field from
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Mathematical and Computer Modelling of Dynamical Systems 135

PIV data by using POD, and of Druault et al. [22], who used POD for time interpolation
from PIV data found in in-cylinder engine flow.

Although PIV measurements provide an experimental means to obtaining the instanta-
neous flow velocity profile, one may not have enough resources or time to physically build
the experimental set-up necessarily needed to test a particular flow case. In these cases, it is
reasonable to resort to computational fluid dynamics (CFD) simulations, which have been
proven to provide very accurate representations of the actual flow processes [23,24]. The
CFD simulation results can be used to construct the instantaneous images required for the
POD process, the examples of which include the works of Ravindran [25] who has built
adaptive controllers for fluid flow, Bleris and Kothare [26] who have studied reduced-order
distributed boundary control of thermal transients in microsystems and Kowalski and Jin
[27] who have constructed reduced-order models of non-linear models of electromagnetic
phased-array hyperthermia.

In the existing literature, the usual procedure for the reduced-order modelling of fluid
flows is to apply GP following POD. This procedure involves substituting the POD expan-
sion into the governing equations (mostly the NS PDEs) and isolating the dynamics of
the time coefficients, with certain approximations and truncations necessary. For instance,
Rowley et al. [10] obtained models for compressible isentropic flows by using GP, and
Gerhard et al. [28] obtained low-dimensional Galerkin models to control vortex shedding.
Although widely employed, GP is relatively complicated in terms of mathematical manip-
ulations and it is prone to numerical errors as it involves computations on the NS equations
and requires that certain terms be ignored in the approximation. Certain improvements and
modifications have been proposed to the POD/GP approach including determination of
free parameters in the POD/GP system from flow simulations via a minimization problem
[29] and using interspersed intervals whose lengths are chosen according to several ideas
that include an a priori estimate of the error of the Galerkin approximation [30]. Even
though these approaches are major improvements over the traditional approaches, GP is
still part of the picture.

In this article, we propose identifying the model directly from the POD time coeffi-
cients, hence skipping GP and replacing it with system identification (SI). SI techniques
are well established and reliable numerical software is widely available. In addition, SI
procedures perform tuning by directly operating on the data without going through any
mathematical manipulations on the NS equations, eliminating another source of potential
error. In particular, we outline a systematic application of PIV, CFD, POD and SI to the
problem of obtaining dynamical models to represent the flow over a flapping wing. The
proposed approach is based on experimentally obtaining PIV or CFD snapshots of the
flow, and then numerically processing these snapshots to construct the spatial POD modes
and the temporal time coefficients. SI techniques are then used to fit a dynamical model
to the time coefficients. The flow is reconstructed using these dynamical models, and it is
observed that the results are sufficiently close to the reconstructions obtained from POD
coefficients as well as the original snapshots obtained from PIV or CFD.

At this point, it is worth mentioning that the main goal of flapping wings is to generate
thrust for the air vehicle, and one can find many studies in the literature regarding this topic.
However, in this article we do not concentrate on the trust generation process through wing
flapping but instead we investigate the flow structures formed as a result of wing flapping.
The experiments were also set up with this goal in mind: the experimental set-up locks
the wing in place so that no translational motion takes place and the only motion is the
rotation of the wing at the quarter-chord length from the leading edge. Together with the
fluid at rest, this represents a hovering-type scenario, for example, when the air vehicle is
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136 O. Durmaz et al.

flapping wings at a constant altitude without moving horizontally. The goal is to study the
shape and intensity of the flow structures resulting from flapping wings while hovering and
build mathematical models to capture their dynamics. These structures are important as the
vortices formed can be quite intense and could cause problems such as airframe fatigue as
well as noise and vibration on the vehicle, affecting flight safety and performance. Hence,
having mathematical models to represent these effects gives us the potential to analyse and
perhaps later reduce (via control design) these unwanted characteristics.

The rest of the article is organized as follows: Section 2 presents the methodology
for the dynamical modelling procedure. Section 3 illustrates results of applying the pro-
posed methods to two example scenarios regarding flapping wings. Section 4 presents an
overall quantitative comparison of the results. Section 5 concludes the article with some
discussions and future research directions.

2. Methodology

The method proposed in this article consists of three main parts. The first task is to obtain
the instantaneous velocity vectors of the flow using PIV and CFD techniques. These mea-
surements are then input to the POD procedure so as to decompose the flow into its spatial
components, that is, the POD modes, and its temporal components, that is, the time coef-
ficients. The final step is to fit a dynamical state-space model using SI techniques to the
trajectories of the time coefficients.

2.1. Instantaneous flow field measurements using PIV technique to obtain data for
the autonomous and slow pitching case

PIV is a non-intrusive measurement technique that allows observing the instantaneous flow
field [18]. A schematic illustration of the PIV set-up used in our experiments is shown in
Figure 1, and a photograph of the set-up is shown in Figure 2. Flow properties and PIV
parameters are tabulated in Table 1. The set-up consists of an Nd:YAG laser, a charge-
coupled device (CCD) camera and a lens system. In the PIV system, different particle

Water tank

Nd:YAG laser

CCD camera

Airfoil

Traverse mechanism

Figure 1. Schematic illustration of the PIV set-up.
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Mathematical and Computer Modelling of Dynamical Systems 137

Figure 2. Photograph of the PIV set-up.

Table 1. Flow properties and PIV parameters.

Airfoil Type NACA0012
Chord c = 0.06 m

Flow Fluid Water
Temperature (◦C) 21

Motion T , period (s) 10
Maximum angular velocity (rad/s) 0.329
Reynolds number (Re) 188

Seeding Type Silver-coated hollow glass spheres
Diameter (μm) 10
Concentration (g/cm3) 0.0000475

Laser Type Nd:YAG

Recording Camera type FlowSense 2M CCD
Number of cameras 1
Lens focal length (mm) 60
Frame rate (Hz) 5
�t/T 0.02
Resolution (pixels) 1600 × 1200
Exposure delay time (μs) 10,000

Interrogation Method Double frame and adaptive
cross-correlation

Resolution 32 × 32 pixels with 50% overlap
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138 O. Durmaz et al.

seeds in the flow field are used to reflect the beam of Nd:YAG laser, which flashes in dis-
crete time with a definite frequency to the CCD camera. In our case, silver-coated hollow
sphere particles with 10 μm average diameter are used for the visualization of the vector
field. The concentration of the seeding inside the water tank is 4.75 × 10−5 g/cm3. The
experimental set-up includes a plexiglass water tank of 40 cm × 40 cm × 80 cm length.
Inside the tank, the pitching motion of a wing takes place, which is performed by a traverse
system placed on top of the water tank. A FlowSense 2M CCD camera is placed under the
water tank to obtain instantaneous velocity field around the airfoil at a section. The focal
length of the CCD camera is 60 mm and the frame rate is 5 Hz. Therefore, the system
can take 50 double images in a period of motion (T = 10 s). The resolution of the snap-
shots is 1600 × 1200 pixels. In order to collect velocity data, it is necessary to calibrate
the system before the experiment to convert pixel to metres. The power of the Nd:YAG
laser is 120 mJ/pulse. The time separation is 10,000 μs, which allows a displacement of
about 8 pixels. Adaptive correlation is applied. In the experiments, an NACA0012 wing is
used. The chord length of the wing is 6 cm and the span is 30 cm. The centre of rotation
is located at the quarter chord of the airfoil from the leading edge. The traverse system
comprises two step motors. The first motor allows the translational motion and the second
motor is associated with the rotation of the wing. The useful rotational motion is of 360◦.
The motor is connected to the quarter chord of the airfoil; therefore, angular displace-
ment of quarter chord is zero. As this study deals with flapping motion in hover mode,
the pitching motion is carried out in zero free-stream velocity. The pitching motion of
the airfoil is provided by a motor, which is mounted on the traverse system. The period
of the pitching motion is 10 s and maximum angular velocity is 0.329 rad/s. This gen-
erates a flow of Reynolds number 188, computed from the mean flow velocity over the
wing, the density of the fluid (water) and the chord length. The signals that provide the
movement of the motors are generated by a MATLAB/Simulink program. The camera and
Nd:YAG laser operate in synchronized fashion to capture the reflection from the particles.
The captured double images are processed by Dantec Studio program employing the adap-
tive cross-correlation method [31]. This is used to construct the velocity vectors by finding
differences between sequential snapshots [32]. In order to extract the velocity informa-
tion from the PIV images of the particles, interrogation analysis is needed. PIV images
are analysed by dividing the images into small interrogation regions [33]. Smaller inter-
rogation window size is preferable because it can give better spatial resolution of the PIV
measurements. However, if the window size is too small, it can cause inaccurate velocity
vectors. Interrogation is done by adaptive cross-correlation method [34,35]. The resolution
of interrogation area is 32 × 32 pixels. The output of the process is the velocity vec-
tor fields, that is, the x and y velocities of the snapshots, which are then imported into
MATLAB.

To use the PIV data for POD and SI, a preprocessing of the snapshots is needed to
determine the geometry of the airfoil; this must be done at each time instant since the airfoil
is in motion. For this purpose, an image processing algorithm in MATLAB was developed
for masking the airfoil. By using MATLAB Image Processing Toolbox, techniques such as
image enhancement, noise elimination, morphological operations and edge detection were
applied in proper sequence to each PIV snapshot to determine the geometric properties
of the airfoil such as the leading edge, trailing edge, quarter-chord location, coordinates
of its surface and pitch angle. Once the geometry of the airfoil is obtained by the image
processing algorithm, velocity information is added inside the airfoil and on its surface.
This is because in the flow field the streamlines cannot penetrate the airfoil as it is a solid
body. In addition, it is simpler to apply the POD method if the velocity information is
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Mathematical and Computer Modelling of Dynamical Systems 139

available for all points within the snapshots. The airfoil performs a sinusoidal pitching
motion, where the instantaneous pitch angle α in radians is given by

α(t) = α0 sin (2π ft) (1)

where α0 = π/6, f = 0.1 Hz is the frequency of the motion and t is the time variable. The
angular velocity ω in rad/s with respect to the quarter chord of the airfoil is given by the
expression

ω(t) = dα(t)

dt
= 2π f α0 cos (2π ft) (2)

As the x–y coordinates of the airfoil’s surface and the angular velocity ω are known for
each snapshot, the velocity vectors U (x, y) inside the moving airfoil and on its surface can
be calculated by

U (x, y) = r (x, y) × ωk (3)

where r is the position vector relative to the quarter chord and k is the unit vector in the
z-direction.

2.2. Recording flow field snapshots using CFD simulations to obtain data for the
actuated and fast pitching case

To obtain a model with actuation and fast pitching, we use CFD simulations of a
NACA0012 airfoil, which are pitching while simultaneously injecting fluid normal to the
surface out of a slit located on the surface. For the sake of example, we place the slit
on the upper camber towards the leading edge; this selection does not cause any loss of
generality in the modelling procedure and it could be relocated as needed for a different
problem. The CFD simulations are carried out using FLUENT 6.3. The portion of the grid
around the airfoil is shown in Figure 3. The whole CFD domain is a circle of radius 1.5 m
with the wing of chord length 0.06 m at its centre. The large domain size is necessary
for the accuracy of the CFD simulations involving shedding of vortices. For the mod-
elling studies, the data obtained from CFD are later clipped to a smaller square domain
� = [−0.75, 0.75] × [−0.75, 0.75]. The entire grid contains 25,631 nodes and is more
concentrated around the airfoil and its trailing region, because these are the areas where
most of the activities take place. The location for the actuation on the airfoil is shown by
red circle in the figure. The diameter of the slit is about 8 mm. The simulations are car-
ried out in 2D with double precision using the pressure-based NS solver of FLUENT. Wall
boundary conditions are used on the wing except for the slit, which is a velocity inlet nor-
mal to the boundary. The flow velocity at the inlet is specified by a user-defined function
(UDF). The circle encapsulating the whole domain is specified as an outflow boundary. The

Figure 3. The location for actuation (red) on the airfoil shown within the grid used for CFD (green).
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Figure 4. Input signal for the CFD simulations.

mesh is rotated dynamically by the use of a UDF to achieve the pitching motion described
in Equation (2), but instead of 0.1 Hz we select the pitching frequency to be f = 10 Hz
to achieve the fast pitching motion.1 The solver is configured to obtain unsteady solutions
and record time data at a time step of 0.01 s for 400 time steps, for a total of 4 s. The
actuation is achieved by means of a UDF, and the system is actuated through the location
shown in the figure. The input applied to the system by the actuator (see Figure 4) is a
combination of four different signals: zero input, triangle wave, square wave and a chirp
signal. These signals reveal, respectively, the system’s dynamical response under no exci-
tation (only pitching), time-varying actuation, constant excitation with sudden jumps and
sinusoidal actuation at a range of frequencies. The chirp signal is especially important and
has been successfully used in previous works on flow modelling, for example, the work
of Bergmann et al. [36]. This signal also includes a negative component so as to model
the effect of sucking in fluid from the actuator location. These composite input signals
excite a wide range of dynamical modes of the flow process that can be exploited by model
identification techniques in the succeeding sections. The pitching motion, together with
the injection, generates a flow of Reynolds number 4768, computed from the mean flow
velocity over the wing, the density of the fluid (water) and the chord length.

Remark: At this point, it is worth making the clarification that the pitching motion of the
wing is prescribed, that is, it is not caused and is not affected by the injection through the
slit. The injection through the slit is meant to demonstrate the proposed method’s capability
of handling actuated flow.

2.3. Applying POD to the snapshots to obtain the POD modes and time coefficients

POD is an effective method of data analysis using which high-dimensional processes can
be described by low-dimensional approximations. A flow velocity field can be decom-
posed into spatial modes and time-dependent amplitudes by using POD; this method is
also known as the Karhunen–Loève decomposition [14]. In this article, we use the method
of snapshots approach for POD, for which first some snapshots of the flow are collected
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from an experimental (e.g. PIV) or a numerical system (e.g. CFD). After collecting the
data, POD technique produces a set of basis functions that optimally represent the spatial
distribution of the snapshots collected. Each POD basis function captures a certain per-
centage of the energy of the flow field [32,35]. One can choose a certain number (N) of
POD modes to capture a sufficient amount of the flow energy and then represent the flow
field as a finite-dimensional approximation as

U(x, y, t) ≈ Ū(x, y) +
N∑

i=1

ai(t) φi(x, y) (4)

where ai are time coefficients, φi are the POD modes of the ensemble and Ū is the average
flow velocity. To obtain the POD modes φi of the flow field, one first obtains a set of
instantaneous velocities (snapshots) Ui, where Ui(x, y) = U(x, y, ti) and ti is the ith time
instant where measurements are taken. The average of the ensemble of snapshots can then
be computed as

Ū(x, y) = 〈U〉 = 1

M

M∑
m=1

Um(x, y) (5)

where M is the number of snapshots. Then a new set of snapshots (Vi) are obtained by
subtracting this mean value from each velocity measurement

Vi (x, y) = V(x, y, ti) = U(x, y, ti) − Ū(x, y) = Ui(x, y) − Ū(x, y) (6)

Next, the M × M spatial correlation matrix C of the ensemble is constructed as follows:

Cij = 1

M
Vi (x, y) , Vj (x, y)� (7)

where 〈·, ·〉� denotes the inner product over the flow domain � that can be approximated
over the set of grid points G ⊂ R

2 using a suitable quadrature rule. The eigenvalue equation

Cai = λiαi (8)

is solved to obtain the time coefficients at time instants ti, that is, ai = [ai (t1) . . . ai (tM )]T .
The coefficients are scaled such that

1

M

M∑
m=1

ai(tm) aj(tm) =
{

λi, if i = j
0, if i �= j

(9)

The POD modes φi are then computed as

φi (x, y) = 1

Mλi

M∑
m=1

ai(tm) Vm(x, y) , i = 1, . . . , M (10)

It can be shown that the POD modes obtained using this procedure are orthonormal, that
is, they satisfy
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142 O. Durmaz et al.

〈
φi(x, y), φj(x, y)

〉
�

=
{

1, if i = j
0, if i �= j

(11)

The eigenvalue λi represents the amount of energy of the flow field captured by the ith
POD mode φi. Based on this energy information, one can decide on the number of POD
modes (N) to include in the approximation (4). By including N modes, the approximation
captures

∑N
n=1 λn∑M
m=1 λm

× 100% (12)

of the total flow energy. The procedure described for obtaining the POD approximation of
the flow is termed the method of snapshots, the details of which can be found in Holmes
et al. [37] and Sirovich [38]. In this study, this is the procedure applied to the post-processed
PIV or CFD snapshots of the pitching airfoil in order to obtain an expansion of the form
given in Equation (4).

2.4. System identification

Once the POD modes are obtained and the flow is expanded as in Equation (4), it can be
observed that the time variation is dictated only by the coefficients ai because the modes i

depend only on the spatial variables (x, y) and not on the time variable (t). Hence, to model
the flow dynamics, it is sufficient to fit a suitable dynamical model to the trajectories of
the time coefficients ai(t). For this purpose, we derive a state-space model of the following
form:

ξ(t + Ts) = Aξ(t) + Bγ (t) (13)

y(t) = Cξ(t) + Dγ (t) (14)

where ξ ∈ R
n is the state vector, n ∈ N is the degree of the system, γ ∈ R is control input

and y ∈ R
n is the output signal. As the flow snapshots are obtained at discrete time inter-

vals separated by a sampling period of Ts ∈ R seconds, the above model is a discrete-time
state-space model. The matrices A, B, C and D determine the dynamical system and are
obtained by constructing a model from Equations (13) and (14) using SI techniques. For
this purpose, the input–output data must be collected for the system, which is usually
done by applying various input signals (e.g. sine waves, ramp functions and chirp sig-
nals) and recording the resulting outputs, which are the time coefficients of the expansion,
that is,

y(t) = a(t) = [a1(t) a2(t) . . . aN (t)]T (15)

where N is the number of POD modes used in the expansion. From the input–output
data, subspace SI method (N4SID) is used for obtaining the A, B, C and D matrices in
Equations (13) and (14). The main idea behind the subspace method is to first estimate the
extended observability matrix
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Qr =

⎡
⎢⎢⎣

C
CA

...
CAr−1

⎤
⎥⎥⎦ (16)

for the system from input–output data by direct least-squares like projection steps.
In particular, it is possible to show that an expression of the form

Yr(tk) = Qrξ(tk) + Sr
r(tk) + V (tk) (17)

can be obtained from Equations (13) and (14), where

Yr(tk) =

⎡
⎢⎢⎣

y(tk)
y(tk+1)

...
y(tk+r−1)

⎤
⎥⎥⎦ (18)


r(tk) =

⎡
⎢⎢⎣

γ (tk)
γ (tk+1)

...
γ (tk+r−1)

⎤
⎥⎥⎦ (19)

Sr =

⎡
⎢⎢⎢⎢⎣

D 0
CB D

· · ·
· · ·

0 0
0 0

...
...

. . . ...
...

CAr−2B CAr−3B · · · CB D

⎤
⎥⎥⎥⎥⎦ (20)

and V (t) is the contribution because of output noise. The extended observability matrix
Qr can then be estimated from Equation (17) by correlating both sides of the equal-
ity with quantities that eliminate the term Sr
(tk) and make the noise influence from
V (tk) disappear asymptotically. Once Qr is known, it is possible to determine C and
A by using the first block row of Qr and the shift property, respectively. Once A and
C are at hand, B and D are estimated using linear least squares on the following
expression:

y(tk) = C(zI − A)−1 Bγ (tk) + Dγ (tk) (21)

where Equation (21) is a representation of the system described by Equations (13) and
(14) in terms of the time-shift operator z. This last step may be skipped in case of an
autonomous model (as B and D will be absent). Details of the subspace method for esti-
mating state-space models can be found in Ljung [39], Van Overschee and De Moor [40]
and Larimore [41].
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3. Results

3.1. Example 1: autonomous model of a slow-pitching NACA0012 airfoil using PIV
measurements

In this section, the results of applying the methodology described in the previous sections to
obtain a dynamical model for the autonomous slow pitching motion of a NACA0012 air-
foil is presented. First, experiments are conducted to collect velocity data using the PIV
set-up described in Section 2. A couple of the instantaneous images obtained from PIV
measurements are shown in Figure 5. One can see the laser illuminated seeding parti-
cles, which appear white in the figure, and the airfoil in motion, which appears black. One
can also observe that there is a shadow region behind the airfoil within which flow mea-
surements cannot be obtained. The next step is obtaining velocity vectors from the PIV
images for five periods using Dantec Dynamic Studio. After this, the location of the air-
foil and that of the shadow region behind airfoil are determined using image processing
techniques. Figure 6 shows the instantaneous velocity with the appropriate airfoil location
superimposed on the image and the shadow region filled using interpolation from neigh-
bouring points. Prior to applying POD to the snapshots, the velocity information inside
the airfoil and its surface is also filled in using expression (3), and the mean value of the
flow is removed. The first four modes resulting from applying POD to the flow snapshots
are shown in Figure 7. The first mode is the highest energy mode and captures the domi-
nant characteristics of the flow. The subsequent modes reveal additional details of the flow
behaviour. The number of POD modes to include in the expansion (4) is selected based
on how much of the flow energy (and thus the amount of detail) one wishes to include in
the approximation. Including a high number of modes will yield a better approximation,
but will increase the complexity of the resulting model. In this part, we have chosen to
include 100 modes out of 250, which correspond roughly to 98% of the flow energy (see
Figure 8). To verify that the selected number of modes can represent the flow accurately,
we obtain a reconstruction of the flow using Equation (4). The reconstructed flow velocity
is shown in Figure 9. As shown in Figure 6, it can be observed that the reconstructed flow
velocity is quite similar to snapshots obtained from PIV. The next step is to fit a dynamical
model to the time coefficient data using the N4SID SI technique. This procedure is carried
out using MATLAB System Identification Toolbox and a discrete-time state-space dynam-
ical model of the forms (13) and (14) is obtained. The order of this model turned out to
be 40. To evaluate how well this model approximates the POD time coefficients, we first
run this model for the length of five periods (50 s) and compare the output of the model
with the POD time coefficients. This comparison is presented in Figure 10. It can be seen

Figure 5. Two instantaneous PIV images of a pitching NACA0012 airfoil.
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Figure 6. Velocity of the PIV snapshots during the second period, where the arrows indicate
direction and the colours indicate the magnitude.
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Figure 7. The first four POD modes.

D
ow

nl
oa

de
d 

by
 [

T
O

B
B

 E
ko

no
m

i V
e 

T
ek

no
lo

ji]
 a

t 0
2:

18
 2

2 
M

ay
 2

01
5 



146 O. Durmaz et al.

100

x: 100
y: 98.9395

90

85

80

75

70

P
e

rc
e

n
t 
e

n
e

rg
y
 l
e
ve

l

65

60

55

50

50 100 150

Number of  modes

200 250

Figure 8. Percent energy level versus number of POD modes.
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Figure 9. Velocities reconstructed with POD time coefficients.

that the model output is acceptably close to the POD time coefficients. Hence, it can be
stated that the dynamical model is successful in capturing the time variation of the flow.
As a final test, we perform a reconstruction of the flow using the dynamical model’s output
as the time coefficients (ai’s) in Equation (4), the results of which are shown in Figure 11.
Comparing this figure with the original PIV snapshots in Figure 6, one can see that the
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Figure 10. Comparison of SI model outputs yi and POD time coefficients ai.
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Figure 11. Velocities reconstructed with SI time coefficients.
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results are sufficiently close to each other. Therefore, the model obtained using the proce-
dure described can represent the flow around the pitching airfoil with acceptable accuracy
and can be used for various analysis and design tasks.

3.2. Example 2: actuated model of a fast-pitching NACA0012 airfoil using CFD
simulation results

In this section, we attempt to construct a dynamical model for the case where the airfoil
is pitching fast and is actuated through a slit on the airfoil (see Figure 3). We are unable
to employ PIV for this case as our experimental set-up lacks actuators and cannot pro-
vide fast pitching. Instead, we use FLUENT to carry out CFD simulations as described in
Section 2.2, using the actuation input shown in Figure 4. The velocity snapshots obtained
from these simulations are shown in Figure 12. The POD modes obtained from these snap-
shots can be seen in Figure 13. The percentage of flow energy retained by choosing a
given number of POD modes to represent the flow is plotted in Figure 14. For the sake
of example, we shall consider two cases, namely using 5 and 11 POD modes to represent
the flow, which correspond to roughly 77% and 90% of the flow energy, respectively. For
the case of five POD modes, the reconstructions using the time coefficients correspond-
ing to the modes are given in Figure 15. Comparing with Figure 12, one can see that five
modes capture the general trend of the flow, but there are some local differences in the
details. Thus, this choice would be appropriate when an approximate model would suffice
for the purposes of the application. Proceeding with the SI, as described in Section 2.4,
results in a model of order 70, the outputs of which are shown in comparison with the
POD time coefficients in Figure 16. It can be seen that the dynamical model built by SI
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Figure 12. CFD snapshots of the flow velocity.
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Figure 13. The first six POD modes.
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Figure 14. Percent energy level versus number of modes.

captures the general trend in the time coefficient trajectories, but there are some variations
and departures for certain parts. This is to be expected as the SI-based model is only a
simple finite-dimensional linear approximation of the forms (13) and (14) to the non-linear,
complicated and infinite-dimensional NS PDEs. The reconstructions of the flow snapshots
using the SI model outputs are shown in Figure 17. As expected, the reconstructions are
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Figure 15. Velocities reconstructed with five POD time coefficients.
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Figure 16. Comparison of SI model outputs yi and POD time coefficients ai (5 coefficient case).
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Figure 17. Velocities reconstructed with SI model output (5 coefficient case).

consistent with the CFD snapshots (Figure 12) and POD reconstructions (Figure 15) in
capturing the general characteristics of the flow, but one can observe local differences in
some areas.

For the case of 11 POD modes, the reconstructions using the time coefficients corre-
sponding to the modes are given in Figure 18. Comparing with Figure 12, one can see
that 11 modes capture the general trend of the flow, but there are some local differences
in the details. However, the approximation is better than the 5-mode case (Figure 15)
because 11 modes capture more of the flow energy. This choice would be appropriate
when a more accurate and approximate model would be needed for the purposes of the
application. Proceeding with the SI, as described in Section 2.4, results in a model of
order 80, which is higher than that obtained for the five-mode case. This is to be expected
because the model is required to represent six additional outputs compared with the previ-
ous case. The outputs of the model are shown in comparison with the POD time coefficients
in Figure 19. It can be seen that the dynamical model built by SI captures the general
trend in the time coefficient trajectories, but there are some variations and departures for
certain parts. This is an anticipated outcome because the SI-based model is only a sim-
ple finite-dimensional linear approximation of the forms (13) and (14) to the non-linear,
complicated and infinite-dimensional NS PDEs. The effect of these complications on the
model accuracy may be easy or hard to fix and requires further analysis. For instance,
one can observe a low-frequency drift in the responses in Figure 19, which suggests that
the model may be cured with a mean-flow dependent linear parameter-varying approach.
The non-linearities may also come from higher frequencies, in which case refined models
are needed. Although such an additional analysis was not performed for this particular
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Figure 18. Velocities reconstructed with 11 POD time coefficients.
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Figure 19. Comparison of SI model outputs yi and POD time coefficients ai (11 coefficient case).
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Figure 20. Velocities reconstructed with SI model output (11 coefficient case).

work, we direct the interested reader to refer References [42–44] for details regarding
these advanced modelling strategies. The reconstructions of the flow snapshots using the
SI model outputs are shown in Figure 20. As expected, the reconstructions are consistent
with the CFD snapshots (Figure 12) and POD reconstructions (Figure 15) in capturing the
general characteristics of the flow. One can still observe local differences in some areas,
but the situation is an improvement over the five-mode case (see Figure 17).

4. Overall comparison of all results

As a final overall quantitative comparison of all the scenarios considered, we define the
following percent mean reconstruction error metric:

E
[∥∥∥Ui(x, y) − Ûi(x, y)

∥∥∥]
E [‖Ui(x, y)‖]

× 100% (22)

where U are the original measurements (from PIV or CFD), Û are the reconstructed veloc-
ities (using POD coefficients or SI model outputs), ‖·‖ is the vector norm and E [·] is the
averaging operator that computes the mean value over all the nodes in the flow domain and
all the snapshots. The values obtained are tabulated in Table 2. From the table, it can be
seen that for the unforced slow-pitching wing data from PIV, selecting 100 modes captures
almost all (98.93%) of the flow energy, as a result of which the POD reconstruction is very
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Table 2. Comparison of modelling errors for the cases considered throughout the article.

Case studied

Number of
POD modes

taken

Percent
energy in

POD
expansion

Percent mean
reconstruction error

using POD
coefficients

Percent mean
reconstruction error

using SI model
outputs

Unforced
slow-pitching
wing data
from PIV

100 98.93 0.42 8.04

Forced
fast-pitching
wing data
from CFD

5 76.78 7.08 17.93

Forced
fast-pitching
wing data
from CFD

11 90.27 2.12 9.82

Note: POD, proper orthogonal decomposition; PIV, particle image velocimetry; CFD, computational fluid
dynamics; SI, system identification.

accurate and the SI reconstruction error is also acceptable. Note that the SI reconstruction
error will always be higher because the SI model approximates the POD coefficients; hence,
it is an approximation of an approximation. For the forced fast-pitching wing data obtained
from CFD, the SI model reconstruction error is significantly higher for the 5-mode case
compared with the 11-mode case. The former case might be preferable when high accu-
racy can be compromised to obtain a low-order model, in which case one would settle for
a model representing only the general trends of the flow. However, in order to obtain an
accurate model, one must increase the number of modes and hence agree to dealing with a
higher order model.

It is also worth noting that the slow flapping case is based on experimental PIV data,
whereas the fast flapping case is based on CFD data. We predict that for the experimental
case, the imperfections in the physical set-up, the numerical errors in post-processing and
the unmodelled dynamics of the flow create more random and unpredictable behaviour in
the snapshots compared with the CFD case, which contribute to the necessity of using a
considerably high number (100) of POD modes for an accurate representation.

5. Conclusions, discussions and future works

In this article, a modelling approach to represent the dynamical behaviour of a pitching
airfoil is considered. The method is based on experimental PIV images and CFD snapshots,
which are processed to obtain the instantaneous velocity field of the flow. The location and
orientation of the airfoil is determined using image processing and this information is used
to fill the region in the images corresponding to the airfoil with proper velocity data. These
post-processed images are used to compute the POD modes and time coefficients of the
system. A proper number of POD modes and time coefficients are selected to capture
a desired amount of the flow energy and then a discrete-time state-space model is fit to
these time coefficient trajectories using subspace SI methods. The method proposed is
illustrated in two example problems: (1) building a dynamical model for a slow-pitching
non-actuated airfoil from PIV measurements and (2) building a dynamical model for an
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actuated fast-pitching airfoil from CFD snapshots. It was observed that the models built
can successfully capture the general trends, but there are some local deviations, which are
to be expected because the models are only approximations to the complicated non-linear
physics governing the flow process.

The main original contributions of the article can be summarized as follows:

(1) A novel technique for the modelling of the flow over flapping wings is proposed and
proved to work through PIV experiments and CFD simulations. The novelty of the
technique is due to its fusion of POD and SI to produce reduced-order models for
flows over flapping wings. Such an approach does not exist in the current literature
for flapping wings.

(2) The technique can be applied to both unforced and forced flows, and it is able
to generate the contribution of the actuation as a separate term in the dynamical
model. This is also an important originality because the flow modelling approach
in many studies utilizes only the actuated snapshots in the modelling process and
does not make use of the actuation input beyond the point where the snapshots are
generated. In this study, we provide the actuation input explicitly to SI so as to
force the identification of a relation between the actuation and the flow behaviour.
This produces reduced-order models in which the control term is explicit, which is
the standard structure to which control design can be applied in future works.

The models obtained can be utilized for both analysis and design purposes. One can employ
the models to predict the flow behaviour as a result of wing flapping. This could be useful
as the flapping behaviour could produce unwanted flow structures such as the shedding of
vortices, the magnitude of which could grow quite intense and cause structural damages to
the wing structure as well as to the frame of the air vehicle. Certainly, the eventual goal of
obtaining models representing flow dynamics is to utilize them in control design. This is the
reason why the second case (i.e. the fast flapping case with actuation) was included as this
case enabled us to study the effect of actuation to the flow. Understanding this effect will
allow us to find mechanisms to suppress unwanted flow dynamics such as vortex shedding.
It is also possible to measure/compute the lift and drag forces on the wing, set these as the
output of the model and utilize the actuation input to improve these forces dynamically.

At this point, it should be admitted that the scenarios considered in this article have
relatively low Reynolds numbers (in the context of flow over airfoils) of 188 and 4768,
respectively. Very high Reynolds number flows with lots of turbulence would be quite
challenging to model because the flow behaviour would be highly random and difficult
to capture with deterministic models. In these cases, one might have to resort to more
statistical approaches and/or attempt to find a way of incorporating additional modes to
capture the effects of turbulence. Despite this limitation, we believe that the discussion in
the article is still quite useful because many of the real-life wing flapping applications take
place at relatively low Reynolds numbers. These include living creatures such as birds, bats
and insects as well as most human-made MAVs [45].

It is also worth mentioning that the modelling technique introduced in this article is
only weakly dependent on the particular flapping wing application in the sense that it was
applied to the data collected for this particular case. However, whether the problem is a
pipe flow, cylinder wake, flow around the wings of an airfoil or that of a submarine hull,
the procedure for obtaining the dynamical model is all the same. We therefore believe that
the modelling technique proposed will be of interest to a large community of engineers and
scientists working on a variety of flow control problems.
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Our future research directions include applying the method proposed to data from dif-
ferent PIV experiments and CFD simulations; using different SI techniques (including
non-linear ones) to improve the dynamical models; devising methods to achieve further
order reduction for the models resulting from SI and utilizing the models obtained in
control of flow structures (vortex shedding) as well as critical forces (e.g. lift and drag).
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Note
1. Note that this will result in different flow dynamics than that of Section 2.1, but this is not an

issue for our purposes as we are not attempting in any way to study the consistency of PIV and
CFD results. These methods are just tools to generate data for the modelling process, and the
data collected from PIV and CFD will be used separately to generate two separate models; the
former for the unforced slow-pitching airfoil and the latter for an actuated fast-pitching airfoil.
Ideally, we would have preferred to generate PIV data for both; unfortunately, our experimental
hardware is limited and cannot generate pitching velocities beyond a certain value. In addition,
we currently do not have actuators installed on our set-up.
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